

Scratchtm

Programming
for Teens

Jerry Lee Ford, Jr.

Course Technology PTR
A part of Cengage Learning

Australia . Brazil . Japan . Korea . Mexico . Singapore . Spain . United Kingdom . United States

ScratchTM Programming for Teens
Jerry Lee Ford, Jr.

Publisher and General Manager, Course
Technology PTR: Stacy L. Hiquet

Associate Director of Marketing:
Sarah Panella

Manager of Editorial Services:
Heather Talbot

Marketing Manager: Mark Hughes

Acquisitions Editor: Mitzi Koontz

Project Editor: Jenny Davidson

Technical Reviewer: Parker Hiquet

Teen Reviewer: Hannah Wittig

PTR Editorial Services Coordinator:
Erin Johnson

Interior Layout Tech:
ICC Macmillan Inc.

Cover Designer: Mike Tanamachi

CD-ROM Producer: Brandon Penticuff

Indexer: Sharon Shock

Proofreader: Gene Redding

© 2009 Course Technology, a part of Cengage Learning.

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored, or used in any form or
by any means graphic, electronic, or mechanical, including but not
limited to photocopying, recording, scanning, digitizing, taping, Web
distribution, information networks, or information storage and retrieval
systems, except as permitted under Section 107 or 108 of the 1976
United States Copyright Act, without the prior written permission of the
publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all
requests online at cengage.com/permissions

Further permissions questions can be e-mailed to
permissionrequest@cengage.com

Scratch is a project of the Lifelong Kindergarten group at the MIT Media
Lab. Scratch, the Scratch logo, and the Scratch cat are trademarks of
the Massachusetts Institute of Technology.
All other trademarks are the property of their respective owners.

Library of Congress Control Number: 2008902386

ISBN-13: 978-1-59863-536-2

ISBN-10: 1-59863-536-0

Course Technology
25 Thomson Place
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions
with office locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:
international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

For your lifelong learning solutions, visit courseptr.com

Visit our corporate website at cengage.com

Printed in Canada
1 2 3 4 5 6 7 11 10 09

eISBN-10:1-59863-699-5

To my mother and father for always being there, and to my wonderful children,

Alexander, William, and Molly, and my beautiful wife, Mary.

There are a number of individuals to whom I owe many thanks for their help and

assistance in the development of this book. For starters I need to thank Mitzi

Koontz who served as the book’s acquisitions editor. Special thanks also go out to

Jenny Davidson for serving as the book’s project editor. I also want to thank

Parker Hiquet and Hannah Wittig for all the valuable input and advice. In

addition, I would like to thank everyone else at Cengage Learning for all their

hard work.

Special thanks to the Scratch development team at the MIT Media Lab for

providing such an excellent programming langauge and website.

Acknowledgments

Jerry Lee Ford, Jr. is an author, educator, and an IT professional with over

18 years’ experience in information technology, including roles as an automation

analyst, technical manager, technical support analyst, automation engineer,

and security analyst. He is the author of 24 other books and co-author of two

additional books. His published works include AppleScript Studio Programming

for the Absolute Beginner, Microsoft Windows PowerShell Programming for the

Absolute Beginner, Microsoft Visual Basic 2005 Express Edition Programming for

the Absolute Beginner, Microsoft VBScript Professional Projects, Microsoft Windows

Shell Scripting and WSH Administrator’s Guide, Microsoft Windows Shell Script

Programming for the Absolute Beginner, Learn JavaScript in a Weekend, Second

Edition, andMicrosoft Windows XP Professional Administrator’s Guide. Jerry has

a master’s degree in business administration from Virginia Commonwealth

University in Richmond, Virginia, and he has over five years’ experience as an

adjunct instructor teaching networking courses in information technology.

About the Author

Introduction . xiv

PART I SCRATCH BASICS . 1

Chapter 1 Introducing Scratch . 3

Getting to Know Scratch . 4

Imagine—Program—Share! . 5

Scratch Uncovered . 6

Scratch’s Building Block Approach to Programming 6

Installing Scratch . 8

Installing Java on Windows . 9

Installing Scratch on Windows . 10

Installing Scratch on Mac OS X . 12

Creating Your First Scratch Application . 14

Creating a New Scratch Project . 15

Changing Sprite Attributes . 16

Adding Code Blocks . 16

Saving Your Work . 18

Joining Scratch’s Global Community . 19

Sharing Your Application Projects . 21

Registering with the Scratch Website . 23

Keeping In Touch . 24

Summary . 26

Contents

vi

Contents vii

Chapter 2 Getting Comfortable with the Scratch Development

Environment . 27

Getting Comfortable with the Scratch IDE 28

Getting Familiar with Menu Bar Commands 29

Running Scratch Applications on the Stage 31

Running Applications in Presentation Mode 33

Controlling Application Execution . 33

Working with the Sprite List . 34

Generating New Sprites . 35

Tracking Mouse Pointer Location . 36

Working with the Scratch Toolbar . 37

Switching Between Code Block Groups 38

Getting Comfortable with the Scripts Area 38

Keeping Project Notes . 44

Creating New Sprites Using Scratch’s Paint Editor 46

Examining the Drawing Canvas . 46

Working with the Toolbar and Options Area 47

Working with Button Controls . 49

Specifying Color Settings . 50

Configuring a Sprite’s Rotation Center 50

Summary . 51

Chapter 3 A Review of the Basic Components of Scratch Projects . . 53

Working with Blocks and Stacks . 53

Three Basic Types of Scratch Blocks . 55

Working with Stack Blocks . 55

Working with Hat Blocks . 57

Working with Reporter Blocks . 57

Keeping an Eye Out with Monitors . 58

Eight Categories of Scratch Blocks . 60

Moving Objects Around the Drawing Canvas 61

Changing Object Appearance . 62

Making Some Noise . 63

Drawing Lines and Shapes . 64

Looping, Conditional Logic, and Event Programming 65

Sensing Sprite Location and Environmental Input 65

Working with Numbers . 67

Storing and Retrieving Data . 67

Getting Help with Code Blocks . 70

Summary . 71

Chapter 4 Mr. Wiggly’s Dance—A Quick Scratch Project 73

Programming with Scratch . 73

Creating the Mr. Wiggly’s Dance Application 75

Step 1: Creating a New Scratch Project 77

Step 2: Adding a Background to the Stage 77

Step 3: Adding and Removing Sprites . 80

Step 4: Adding Mr. Wiggly’s Music . 82

Step 5: Playing the Dance Music . 85

Step 6: Making Mr. Wiggly Dance . 87

Step 7: Saving and Executing Your New Scratch Application . . . 90

Distributing Scratch Projects . 91

Distributing Scratch Applications to Windows Computers 92

Distributing Scratch Applications to Mac OS X Computers 93

Instructions for Executing Your Application from a CD-ROM . . . 93

Summary . 94

PART II LEARNING HOW TO WRITE SCRATCH PROGRAMS 95

Chapter 5 Moving Things Around . 97

Working with Motion Code Blocks . 98

Moving and Rotating Sprites . 98

Setting Sprite Direction . 101

Repositioning a Sprite . 103

Changing Sprite Coordinates . 105

Bouncing Sprites Around the Stage . 105

Keeping Track of Sprite Coordinates and Direction 106

Taking Advantage of Scratch Cards . 107

Creating the Virtual Scratch Fish Tank . 110

Step 1: Creating a New Scratch Project 111

Step 2: Adding a Background to the Stage 111

Step 3: Adding and Removing Sprites 111

Step 4: Adding a Suitable Audio File to the Stage 112

Step 5: Playing the Audio File . 113

Step 6: Animating the Swimming of the Fish 113

Step 7: Saving and Executing Your New Scratch Application . . 116

Summary . 117

viii Contents

Chapter 6 Sensing Sprite Position and Controlling

Environmental Settings . 119

Working with Sensing Code Blocks . 120

Retrieving Mouse Button and Coordinate Status 121

Determining when Keys Are Pressed . 123

Determining when Sprites Collide with Other Objects 124

Determining Distance . 127

Working with a Timer . 128

Retrieving Stage and Sprite Data . 129

Retrieving Audio Data . 130

Code Blocks That Work with Sensor Boards 131

Creating the Family Scrapbook Application 132

Step 1: Creating a New Scratch Project 132

Step 2: Adding and Removing Sprites and Costumes 133

Step 3: Adding a Suitable Audio File to the Stage 134

Step 4: Playing the Audio File . 135

Step 5: Displaying the Photographs . 135

Step 6: Saving and Executing Your New Scratch Application . . 136

Summary . 137

Chapter 7 Storing and Retrieving Data . 139

Learning How to Work with Application Data 139

Storing Data in Variables . 141

Creating Scratch Variables . 141

Assigning Variables to Sprites and the Stage 142

Assigning Names to Your Variables . 143

Understanding Variable Scope . 143

Deleting Variables when They Are No Longer Needed 145

Accessing Variables Belonging to Other Sprites 145

Working with Variable Monitors . 147

Two Quick Examples . 147

Developing the Basketball Quiz Project . 148

Step 1: Creating a New Scratch Project 150

Step 2: Selecting an Appropriate Stage Background 150

Step 3: Adding and Removing Sprites 150

Step 4: Adding Variables Required by the Application 151

Step 5: Adding Scripts to Button Sprites to Collect

User Input . 153

Step 6: Automating the Administration of the Quiz 154

Step 7: Saving and Executing Your New Application 157

Summary . 158

Contents ix

Chapter 8 Doing a Little Math . 159

Addition, Subtraction, Multiplication, and Division 159

Understanding the Mathematical Order of Precedence 160

Generating a Random Number . 161

Comparison Operations . 162

Performing Logical Comparisons . 166

Rounding Numbers and Retrieving Remainders 167

Working with Built-in Mathematical Functions 168

Developing the Number Guessing Game Quiz Project 169

Step 1: Creating a New Scratch Project 171

Step 2: Adding a Stage Background . 171

Step 3: Adding and Removing Sprites 171

Step 4: Adding Variables Required by the Application 172

Step 5: Adding an Audio File to the Application 173

Step 6: Adding Scripts to Capture Player Input 173

Step 7: Processing Player Guesses . 174

Step 8: Saving and Executing Your New Scratch Application . . 176

Summary . 176

Chapter 9 Conditional and Repetitive Logic 177

Introducing Scratch Control Blocks . 177

Event Programming . 178

Pausing Script Execution . 179

Executing Loops . 180

Sending and Receiving Broadcasts . 183

Conditional Programming Logic . 184

Nesting Conditional Control Code Blocks 186

Preventing Endless Loops . 186

Terminating Script Execution . 187

Developing the Ball Chase Game . 188

Step 1: Creating a New Scratch Project 189

Step 2: Adding and Removing Sprites 189

Step 3: Adding Variables Required by the Application 191

Step 4: Adding an Audio File to the Application 191

Step 5: Adding a Script to Control Ball Movement 191

Step 6: Adding Scripts That Display Game Over Messages 192

Step 7: Adding Scripts Needed to Control and Coordinate

Game Play . 192

Step 8: Saving and Executing Your Scratch Project 195

Summary . 195

x Contents

Chapter 10 Changing the Way Sprites Look and Behave 197

Changing Sprite Costumes and Backgrounds 198

Changing Sprite Costumes . 198

Changing a Stage’s Background Costumes 200

Making Sprites Talk and Think . 201

Applying Special Effects to Costumes and Backgrounds 202

Changing a Sprite’s Size . 204

Making Sprites Appear and Disappear . 205

Determining What Happens when Two Sprites Overlap 206

Developing the Crazy Eight Ball Game . 207

Step 1: Creating a New Scratch Project 209

Step 2: Adding and Removing Sprites 209

Step 3: Adding a Variable Required by the Application 210

Step 4: Adding an Audio File to the Application 210

Step 5: Creating a Script to Control the Display of the 8 in the

Eight Ball . 210

Step 6: Adding the Programming Logic Needed to Control the

Eight Ball . 211

Step 7: Saving and Executing Your Scratch Project 212

Summary . 212

Chapter 11 Spicing Things Up with Sounds 213

Playing Sounds . 214

Play a Drum . 216

Playing Musical Notes . 217

Configuring Audio Volume . 219

Setting and Changing Tempo . 220

Creating the Family Picture Movie . 221

Step 1: Creating a New Scratch Project 222

Step 2: Adding and Removing Sprites and Backgrounds 223

Step 3: Adding a Variable Required by the Application 225

Step 4: Adding an Audio File to the Application 225

Step 5: Developing the Application’s Programming Logic 226

Step 6: Saving and Executing Your Scratch Project 230

Summary . 230

Chapter 12 Drawing Lines and Shapes . 231

Clearing the Stage Area . 231

Drawing with the Pen . 232

Setting Pen Color . 234

Changing Pen Shade . 236

Working with Different Size Pens . 238

Contents xi

Stamping an Instance of a Costume on the Stage 239

Creating the Doodle Drawing Application 240

Step 1: Creating a New Scratch Project 241

Step 2: Adding and Removing Sprites 242

Step 3: Creating Scripts Used to Control the Doodle

Drawing Application . 244

Step 4: Saving and Executing Your Scratch Project 247

Summary . 247

PART III ADVANCED TOPICS . 249

Chapter 13 Sharing Your Scratch Projects over the Internet 251

Running Scratch Applications on the Internet 251

Registering with the Scratch Website . 252

Uploading Your Scratch Applications . 254

Viewing and Organizing Your Applications Online 257

Running Your Application . 257

Adding Comments . 257

Adding Tags . 259

Creating Galleries . 260

Removing Projects . 264

Updating Your Projects . 264

Other Scratch Website Features . 264

Downloading Other People’s Projects . 265

Summary . 266

Chapter 14 Collecting External Input Using a Scratch Board 267

Interacting with the Real World . 268

Buying a Scratch Board . 269

Installing Your Scratch Board . 269

Using the Sensor Block to Interact with Your Scratch Board 270

Collecting Input Using the Slider Control 270

Using the Button Control to Initiate Action 272

Reacting to Light . 272

Responding to Sound . 273

Measuring Electrical Resistance . 274

Keeping a Watchful Eye on Sensor Data 275

Summary . 276

xii Contents

Chapter 15 Finding and Fixing Program Errors 277

Dealing with Application Errors . 277

Understanding Syntax Errors . 279

Keeping an Eye Out for Logical Errors 279

Tracking Down Run-Time Errors . 280

Debugging Your Scratch Applications . 281

Basic Debugging Techniques . 281

Running Your Application in Single Stepping Mode 284

Watch Out when Removing Sounds and Sprites 287

Getting Help . 288

Referring to Scratch’s Online Help . 289

Getting Help for Individual Code Blocks 289

Getting Help from Other Scratch Programmers 291

Summary . 292

PART IV APPENDICES . 293

Appendix A What’s on the Companion CD? 295

Appendix B What Next? . 297

Glossary . 303

Index . 307

Contents xiii

Welcome to Scratch Programming for Teens! Scratch is a programming language

developed by the MIT Media Lab for the purpose of teaching programming to

teens and other first-time programmers. Scratch is a new programming language,

initially released in May 2007. Scratch supports the development of computer

games, interactive stories, graphic artwork and computer animation, and all sorts

of other multimedia projects.

Scratch allows new programmers to create programs by snapping together blocks.

Scratch consists of a programming language made up of different blocks and an

easy to learn graphical development environment that includes a paint application

for creating graphics and built-in sound editing capabilities. Scratch also comes

with huge collections of sample applications as well as graphics and sound files, all

of which you can use to create your own Scratch projects.

As demonstrated in Figure A.1, Scratch programs are made up of graphical

blocks, which are snapped together. Scratch blocks resemble puzzle pieces in the

way that they snap together. Scratch blocks can only be snapped together in ways

that make sense, preventing new programmers from using them in invalid

combinations. In this way, Scratch enforces proper programming syntax and

ensures that new programmers learn the proper way to assemble and formulate

programming logic.

Scratch’s development was inspired by the method that hip-hop DJs use to mix

and scratch records to create new and uniquemusic. In Scratch, new programmers

Introduction

xiv

are able to create new application projects that incorporate pre-built code blocks,

graphics, and sound files in all kinds of new combinations. Scratch lets pro-

grammers modify applications on the fly, allowing changes to be made even

while Scratch applications are running. The result is an interactive, real-time

programming environment that encourages experimentation and learning.

This book’s primary goal is to teach you everything you need to know to learn the

basics of computer programming with Scratch. To help accomplish this goal, this

book will emphasize learning by doing through the development of a series of fun

and interesting exercises.

Why Scratch?
Scratch provides everything needed to begin developing computer games, multi-

media presentations, interactive stories, graphic artwork, and computer anima-

tion. Scratch can be used to play digital music and sound effects. Scratch’s

building block approach to programming sets it apart from other programming

languages. This makes Scratch easier to learn. And yet Scratch provides plenty of

programming power, allowing you to build very powerful application projects.

If you aspire to one day become a professional programmer, you will find that

Scratch provides everything needed to build a foundation from which you can

make the transition. Scratch also packs all of the programming power and punch

needed to satisfy the programming needs of most computer enthusiasts and

hobbyists.

Who Should Read This Book?
Scratch Programming for Teens is designed to provide all of the instruction that

a first-time programmer requires to quickly get up and running. Previous

programming experience will certainly be helpful, but it is by no means a

Introduction xv

Figure A.1
Script blocks are used as the basis for writing scripts that help bring applications to life.

xvi Introduction

requirement of this book. This book makes no assumptions about your

computer background other than that you are comfortable working with one of

the operations systems supported by Scratch.

This book provides everything you need to get started with Scratch. Before you

know it, you will be creating all kinds of projects, incorporating graphics, sound,

and animation. As you learn how to program with Scratch, you will learn

programming principles and techniques that you can later apply to other pro-

gramming languages. As such, you will be able to apply what you learn about

programming with Scratch to other programming languages like Microsoft

Visual Basic and AppleScript.

What You Need to Begin
Obviously, the first thing you need is a copy of Scratch. Scratch is available for

free download at the Scratch website located at http://scratch.mit.edu/download.

You can also download a copy from the CD included in the back of the book. You

also need good instruction, which you will find in this book. In addition to

Scratch and this book, you need a computer running a supported operating

system, which also meets Scratch’s minimum system requirements.

Supported Operating Systems

Scratch can be run on computers using either Microsoft or Macintosh operating

systems. Specifically, Scratch can be installed on a computer running any of the

following operating systems.

n Microsoft Windows 98/ME

n Microsoft Windows NT/2000

n Microsoft Windows XP/Vista

n Mac OS X Version 10.3 or higher

All of the figures and examples in this book will be shown using Scratch 1.2.1

running on computers using either Microsoft Vista or Mac OS X 10.5. If you

are going to be working with Scratch on a different version of Windows or

Mac OS X, you may notice small differences in the way things look. However,

all major Scratch features and functionality should work the same and you

http://scratch.mit.edu/download

should not have any problems following along with the instruction provided in

this book.

No t e

There is no official Linux version of Scratch currently available. However, members of the Scratch
community have created different Scratch implementations for Linux. An example of one such
implementation is available at http://tcpdpodcast.org/scratch.html.

Minimum System Requirements

Scratch does not impose any additional hardware requirements over and above

those required by the operating system. However, as Table A.1 shows, Scratch

does impose screen resolution and disk space requirements, which must be met

for Scratch to run.

To work with Scratch, you must be able to display its graphical interface, also

referred to as its integrated development environment or IDE. This interface

requires that the computer’s screen resolution be set to 1024 � 768 or higher.

Anything less and part of the interface will disappear off the screen. Scratch

comes packed with all kinds of graphics and audio files that you can use when

creating new Scratch projects. As a result, your computer must have at least an

extra 120MB of hard disk space in order to install Scratch.

No t e

One of the really neat things about Scratch is the ability to share Scratch application projects with
others on the Internet at the Scratch website (Scratch.mit.edu). To participate in this experience,
your computer needs to have Java installed. Mac OS X comes with Java pre-installed. However, by
default, Microsoft Windows does not. So, if you are a Windows user and you have not yet installed
Java on your computer, you can do so by visiting http://java.com/en/download.index.jsp.

Introduction xvii

Table A.1 Scratch Minimum System Requirements

Requirement Recommended

Screen Resolution 1024 � 768 (16-bit color)

Hard Disk 120MB

http://tcpdpodcast.org/scratch.html
http://java.com/en/download.index.jsp

xviii Introduction

Of course, Scratch’s minimum hardware requirements are just that, minimum

requirements. If your computer’s memory and processor exceed the minimum

requirements of the operating system, things will run a lot faster and you will be a

lot happier. In addition, you will need extra hard drive space beyond the 120 MB

minimum required to install Scratch to have a place to store your creations.

Scratch lets you create projects that incorporate the use of sound, both as input

and output. To take advantage of this feature, your computer will need both

speakers and a microphone.

How This Book Is Organized
Scratch Programming for Teens is organized into four parts. This book was

written with the expectation that you will read it sequentially, from cover to

cover. However, if you have some previous programming experience, you may

instead want to jump around a bit, focusing on topics that interest you the

most.

Part I of this book is made up of four chapters that provide an introduction to

Scratch and its development environment. You will also learn about the different

components that make up Scratch projects and then learn how to create and

execute Scratch projects.

Part II consists of eight chapters, each of which is designed to provide instruction

on how to work with different types of Scratch blocks. You will learn how to use

blocks that move things around, store and retrieve data, as well as perform math

and conditional and repetitive logic. You will also learn how to integrate sound

and draw lines and shapes.

Part III of this book is made up of three chapters, each of which focuses on a

different advanced topic. These topics include learning how to share your Scratch

projects with others on the Internet, how to create Scratch projects that use the

Scratch Board, and how to find and fix program errors that prevent your Scratch

projects from working like you want them to.

Part IV is made up of two appendices and a glossary. The first appendix reviews

the list of sample Scratch projects that you will learn how to develop as you make

your way through this book. The second appendix provides a list of websites and

reading materials that you will want to explore to continue learning more about

Scratch and to further your programming knowledge.

Conventions Used in This Book
One of the primary objectives of this book is for it to be easy to read and

understand. To help support this objective, a number of simple conventions have

been used throughout the book to highlight critical information and help

emphasize specific points. These conventions are briefly described below.

n Italics. Key terms that you will want to understand and remember are

highlighted using italics the first time that they are instructed. So remember,

anytime you see a term in italics, take an extra moment to think about it

and understand its meaning or purpose.

No t e

Notes are used to provide additional information about a topic, feature, or idea to better help you
understand its impact or implications.

T i p

Tips are used to point out programming shortcuts that will help make you a better and more
efficient programmer.

C au t i o n

Cautions are used to identify areas where you are likely to run into problems and then provide
advice on how to deal with the problem or prevent problems from occurring, making you a better,
more efficient, and much happier programmer.

Introduction xix

This page intentionally left blank

Scratch Basics

Part I

This page intentionally left blank

Introducing Scratch

Scratch is a programming language developed to help young people between the

ages of 8 and 16 learn 21st century skills by developing computer programs.

The development of Scratch was inspired by the scratching process that DJs use

to create new sounds andmusic by rubbing old-style vinyl records back and forth

on record turntables, creating a new and distinctively different sound out of

something that already exists. In similar fashion, Scratch application projects mix

together graphics and sounds in order to use them in new and different ways. To

help get you started with Scratch programming, this chapter provides an over-

view of the language and reviews the steps that you need to follow to get up and

running quickly.

The major topics covered in this chapter include:

n A review of Scratch’s capabilities and uses

n Instruction on how to install Scratch on both Microsoft Windows and Mac

OS X

n A discussion of the benefits of joining Scratch’s global community

n A demonstration of how to create and execute your first Scratch application

project

3

chapter 1

Getting to Know Scratch
With traditional computer and Internet applications, users are limited to

working with applications in the way the programmers who developed the

applications designed. Scratch turns things around by letting users become

programmers. Scratch is designed to meet the needs of young people between 8

and 16, helping to introduce them to computer technology and to improve their

learning skills while at the same time facilitating creativity and personal

expression.

Many people regard computer programming as a mysterious and complex process

that requires advanced technical training and education. This is a misperception.

Programming languages like BASIC have been around for decades and were

developed expressly for the purpose of teaching first-time programmers how to

program. In recent years, a new crop of programming languages has appeared,

specifically geared towards helping children and students learn to program. One of

the very best and newest of these languages is Scratch.

Scratch is a visual programming language that is made up of a graphic

interface that supports application development in which new projects are

created by mixing together images, sound, and video under the control of

scripts, which specify the application’s programming logic. Scripts are created

by snapping blocks together, much in the same way that Lego blocks are

snapped together to create all sorts of unique creations. Each block represents

a different command or action that tells the application how to execute.

Scratch also provides programmers with access to all kinds of media, including

graphics and sounds as well as tools that can be used to create new graphics and

sound files.

No t e

Scratch is also being installed on all XO laptops, as part of the One Laptop Per Child Project, which
is a program designed to produce and distribute inexpensive laptop computers to children in
developing countries around the world to help their education and unlock their potential.

Scratch is an interpreted programming language. This means that application

projects are not precompiled (turned into executable code that can be run as a

stand-alone application) before their execution. Instead, the code blocks that

make up Scratch application projects are interpreted and processed each time the

application project is executed. Scratch is also a dynamic programming language.

4 Chapter 1 n Introducing Scratch

It allows changes to be made to application projects even while the projects are

executing. As such, Scratch lets programmers experiment by making application

changes on the fly in order to see what type of effect the changes may have on the

application’s execution.

Imagine—Program—Share!

Scratch’s slogan is Imagine—Program—Share! It is designed to encourage

teens’ creativity by providing them with an easy to learn yet powerful pro-

gramming environment in which they can unleash the power of their imagi-

nation. Scratch encourages and facilitates the development of application

projects using a mixture of media, graphics, sound, and video in order to create

something new.

Scratch provides new programmers with everything needed to create and execute

new application projects. Its programming language is designed to make it as

easy as possible for new programmers to jump in and get their feet wet and to

receive immediate feedback on their progress. Scratch promotes an under-

standing of programming concepts, including conditional and iterative logic,

event programming, the use of variables, mathematics, and the use of graphics,

and sound effects. By learning to program with Scratch, new programmers

develop an understanding and appreciation of the design process, from idea

generation to program development, then testing and debugging and the incor-

poration of user feedback.

People, especially kids, love to share, as demonstrated through the amazing

success of websites like YouTube, which allows people to share home video.

Sharing is a fundamental part of the Scratch programming experience. Scratch

application projects can not only be run on the programmer’s desktop but can

also be uploaded to the Scratch website, where they can be viewed, executed

online, and commented on by other Scratch programmers from around the

world. By posting their Scratch application projects on the Scratch website, kids

share their experiences and learn from one another and gain gratification and

confidence from the experience.

H i n t

To share an application project, Scratch programmers must provide the source code that makes
the application work. There is no way to keep the source code hidden.

Getting to Know Scratch 5

Scratch Uncovered

For your convenience, a free trial copy of Scratch (version 1.2.1) is available on

this book’s companion CD-ROM. In addition, Scratch can be downloaded from

the Scratch website located at http://scratch.mit.edu/download. Unlike many

programming languages such as Microsoft Visual Basic or C++, Scratch is an

open source project. What this means is that all of the source code that makes up

the Scratch programming language is freely available. In fact, if you want, you can

download a copy of the source code for Scratch at http://scratch.mit.edu/pages/

source.

No t e

Scratch was developed using another programming language known as Squeak. Squeak is a cross-
platform programming language, meaning that it can be used to develop applications on many
different computer operating systems. By selecting Squeak as the programming language used to
create Scratch, Scratch’s development team ensured that they would be able to create and
execute Scratch on different operating systems, including Microsoft Windows and Mac OS X. If
you are curious, you can learn more about Squeak by visiting http://www.squeak.org.

Examples of other open source programming languages include Ruby and Perl.

However, unlike these programming languages developed by a community of

programmers working together collectively, Scratch was developed as a closed

development project. This means that all Scratch development is performed by

the Lifelong Kindergarten Group at MIT Media Lab.

Scratch’s Building Block Approach to Programming

Scratch is a new programming language, initially released inMarch 2006. Scratch

is different from other programming languages like Visual Basic in that it does

not support a text-based approach to programming, as demonstrated here:

//Excerpt from a Visual Basic application
If strCurrentAction = "FillCircle" Then

Dim objCoordinates As Rectangle
objCoordinates = _

New Rectangle(Math.Min(objEnd.X, objStart.X), _
Math.Min(objEnd.Y, objStart.Y), _
Math.Abs(objEnd.X - objStart.X), _
Math.Abs(objEnd.Y - objStart.Y))
Pick_Color_And_Draw("FillCircle", objCoordinates)

End If

6 Chapter 1 n Introducing Scratch

http://www.squeak.org
http://scratch.mit.edu/download
http://scratch.mit.edu/pages/source
http://scratch.mit.edu/pages/source

In text-based programming languages, code statements are formulated by fol-

lowing a complex set of syntax rules. Failure to precisely follow these rules when

writing statements leads to syntax errors that prevent applications from running.

Scratch, on the other hand, uses a different approach. Scratch application pro-

jects are built by selecting and snapping together graphical programming blocks,

as demonstrated in Figure 1.1.

By using code blocks in place of complex program text statements, Scratch

significantly simplifies application development while still making use of the

same basic programming logic and concepts implemented in other pro-

gramming languages. As Figure 1.1 demonstrates, each code block repre-

sents a different command or action. Blocks fit together like pieces in a

puzzle. You can only snap together blocks in ways that make syntactic sense,

completely eliminating syntax errors that proliferate in other programming

languages.

Some code blocks are configurable, allowing you to specify things like the

number of times an action should execute, text that is to be displayed, or the

color to be used when displaying something on the screen. Despite its use of

graphical code blocks, Scratch supports the same basic set of programming

techniques and constructs as do other traditional programming languages. For

example, Scratch supports variables, conditional and iterative logic, and event-

driven programming. Scratch also supports the manipulation of graphics and the

integration of sound into application projects.

Getting to Know Scratch 7

Figure 1.1
An example of how programming logic is outlined in a Scratch application project.

No t e

Scratch is designed for teaching first-time programmers how to program. To make the learning
experience as straightforward and understandable as possible, the developers of Scratch have
sometimes sacrificed programming power and features in favor of simplicity and ease of learning.
The goal of the Scratch development team is to promote learning and not to develop a pro-
gramming language capable of delivering every advanced programming feature required by
professional programmers. As a result, Scratch lacks some programming features currently sup-
ported in advanced programming languages. Instead, Scratch focuses on fundamental program-
ming concepts to provide new programmers with a foundation upon which they can later build,
when and if they decide to move on to other programming languages.

Installing Scratch
Before you can use Scratch, you need to install it on your computer. The

installation process varies, depending on whether you use Microsoft Windows or

Mac OS X. Instructions for installing Scratch on both of these operating systems

are provided in the sections that follow. You will find the installation files needed

to install Scratch 1.2.1 on this book’s companion CD-ROM. Alternatively, you

can download a copy of Scratch from the Scratch website by executing the

following steps:

1. Go to http://scratch.mit.edu and click on the Download Scratch Now! link.

2. The Download Scratch page appears. Fill in the optional form to receive

updates about Scratch.

3. Click on the Continue to Scratch Download button. The web page shown

in Figure 1.2 displays. Click on the appropriate link for your operating

system.

The Windows download file is provided as a self-extracting executable named

ScratchInstaller.exe. The Mac OS X installation file is provided as a Mac OS X

disk image file named MacScratch.dmg. Both of these installation files are

approximately 30MB in size, so to download them you will want to use a

broadband Internet connection.

No t e

There is no official Linux version of Scratch currently available. However, a user-adapted version
of Scratch, along with instructions for installing it, is available at http://tcpdpodcast.org/
scratch.html.

8 Chapter 1 n Introducing Scratch

http://scratch.mit.edu
http://tcpdpodcast.org/scratch.html
http://tcpdpodcast.org/scratch.html

Installing Java on Windows

While Mac OS X comes with Java already installed, Windows does not. For-

tunately, installing Java onMicrosoft Windows is both free and easy. To do so, go

to http://java.com/en/download as shown in Figure 1.3 and click on the Free Java

Download button.

Once the online installation process begins, youwill need to complete the following

steps to finish installing Java:

1. After clicking on the Free Java Download button, you may be prompted

by a Windows security window for permission to allow the installation

process to continue. If so, click on the Continue button.

Installing Scratch 9

Figure 1.2
Downloading either the Mac OS X or Windows version of Scratch.

http://java.com/en/download

2. Next, a window will appear requesting permission to begin the installation

process. Click on the Install button to continue.

3. Finally, a Java Setup Wizard will appear, requiring that you accept the Java

License Agreement. Click on the Accept button and then follow the rest

of the wizard’s instruction to complete the installation process.

Installing Scratch on Windows

Scratch installs on Microsoft Windows like any other Windows application. The

following procedure outlines the steps involved in completing Scratch’s install

process:

10 Chapter 1 n Introducing Scratch

Figure 1.3
Java is required to view and execute Scratch projects loaded onto the Scratch website.

1. Double-click on the ScratchInstaller.exe file.

2. If prompted for confirmation, click on Run to allow the installation process

to begin.

3. If a security message displays, click on Allow to give permission for the

installation process to continue.

4. The Scratch Setup Wizard will then appear, as demonstrated in Figure 1.4.

Click on Next and follow the instructions provided by the wizard to complete

the installation process.

5. Once the Scratch Setup Wizard has completed the installation process,

you will need to click on the Finish button to close the wizard. Scratch will

then automatically start, as demonstrated in Figure 1.5. In addition, a

shortcut for Scratch will be added to the Windows desktop.

No t e

In addition to being able to start Scratch by clicking on its desktop shortcut icon, you can click on
Start > All Programs > the Scratch folder > and then the Scratch icon.

Installing Scratch 11

Figure 1.4
Installing Scratch on Microsoft Windows.

Installing Scratch on Mac OS X

To install Scratch on Mac OS X, double-click on the MacScratch.dmg archive

file to open it. Inside you will see a folder named Scratch. Drag and drop

the Scratch folder to your Applications folder (or to any other location

that you want) to install it. The contents of the Scratch folder are shown in

Figure 1.6.

To start Scratch and begin working with it, double-click on the Scratch icon,

which is represented as a cartoon image of a cat. Within a few moments, the

Scratch IDE should appear, as shown in Figure 1.7.

12 Chapter 1 n Introducing Scratch

Figure 1.5
Running Scratch on Microsoft Windows Vista.

Installing Scratch 13

Figure 1.6
Installing Scratch on Mac OS X.

Figure 1.7
Running Scratch on Mac OS X 10.5.

No t e

The first time you start Scratch, Mac OS X may display a popup dialog window prompting you for
confirmation that you want to run Scratch, because it is an application downloaded from the
Internet. Click on the Open button to allow Scratch to start. This popup dialog window will not
display upon subsequent startups.

Creating Your First Scratch Application
Scratch application projects are made up of objects called sprites. A sprite is a

two-dimensional bitmap image drawn on a transparent background. Sprites can

be moved around and made to interact with one another. Sprites consist of three

primary components, as outlined here:

n Scripts. Collections of code blocks that outline the programming logic that

controls the operation of sprites.

n Costumes. Images that are used to display the sprite on an area of the

Scratch IDE, referred to as the stage. Sprites can consist of any number of

costumes.

n Sounds. Sound effects that are played during application execution when

certain events occur or as background audio.

A sprite’s appearance can be changed by assigning it different costumes. To move

a sprite and control its behavior, you snap together code blocks to create scripts.

Sprites can have any number of scripts associated with them. Scripts can be run

by double-clicking the code blocks that make them up, in which case each block

in the script is executed in top-down order. You can also set things up so that

scripts automatically run when various events occur. For example, you can

configure script execution to occur when a sprite is clicked or when it interacts

with other sprites.

Sprites are displayed and interact with one another on a stage. As such, sprites are

often referred to as actors. Scratch’s stage is located in the upper-right corner of

its graphical interface.

No t e

Sprites can be selected from a predefined collection of graphic objects supplied with Scratch. They
can also be copied and pasted from your hard drive or the Internet or created using Scratch’s built-
in Paint Editor.

14 Chapter 1 n Introducing Scratch

Creating a New Scratch Project

Now that you are familiar with the basic components of sprites, let’s spend a few

minutes learning how to create your first Scratch application project. All new Scratch

projects automatically contain a single sprite, representing an image of a kitten. By

default, the sprite, named Sprite1, does not have any scripts but does have two

costumes and two sounds associated with it. Using this sprite, let’s create a Scratch

application project thatmakes the kittenmeow and say ‘‘HelloWorld!’’ when clicked.

The first step in creating a new Scratch application is to click on the New button

located at the top of the Scratch IDE. In response, Scratch will create a new

project, as shown in Figure 1.8.

As Figure 1.8 shows, the Scratch IDE is organized into a number of separate

components. For starters, the code block area contains code blocks, organized

into eight different collections. You will use selected code blocks to create a script

that makes the kitten talk.

Creating Your First Scratch Application 15

Code Block Area Sprite Area Sprite ListStage

Figure 1.8
Creating a new Scratch application project.

To the right of the code block area is the sprite area. Information about the

currently selected sprite is displayed at the top of this area. Just beneath this

information are three tabs, which are used to control access to the scripts, cos-

tumes, and sounds belonging to the sprite. To the right of the sprite area is the

stage, which currently displays the default costume belonging to Sprite1. Just

beneath the stage is the sprite list, which displays a list of all the sprites that make

up the application project.

No t e

Chapter 2, ‘‘Getting Comfortable with the Scratch Development Environment,’’ provides a detailed
overview of all of the components that make up the Scratch IDE.

Changing Sprite Attributes

The application project that you are creating is designed to work with the default

sprite. Rather than use the sprite’s default name of Sprite1, let’s assign it a more

descriptive name. To do so, overtype the text displayed at the top of the sprite area

with the word Cat. Once you change the name assigned to the sprite, the name

change will automatically be reflected in the sprite list. If you look at the entry for

the sprite in the sprite list, you should see a picture of the sprite, its new name, and

the number of costumes currently assigned to the sprite (you can click on the

Costumes tab at the top of the sprite area to view the sprite’s costumes).

Adding Code Blocks

Now that you have changed the name of the sprite, it is time to add the code

blocks required to make the cat meow and say ‘‘Hello World!’’ Let’s begin by

clicking on the Sound button located at the top of the code block area. This

displays a collection of code blocks that control the playback of sound effects.

Locate the code block labeled play sound and drag and drop it onto the sprite

area, as shown in Figure 1.9.

By default, this code block is automatically set up to play an audio file that makes

a meow sound. Next, click on the Looks button located at the top of the code

block area. This displays a collection of code blocks that control the appearance

of a sprite. Locate the code block labeled say Hello! for 2 secs and drag and drop

it onto the sprite area, as shown in Figure 1.10.

By default, this code block displays a text string inside a graphical bubble caption.

This code block has two editable fields: a text field and a numeric field. Since the

16 Chapter 1 n Introducing Scratch

kitten is supposed to display the message ‘‘Hello world!’’ when clicked, replace

the text ‘‘Hello!’’ with ‘‘Hello World!’’.

As previously stated, you can run a script at any time by double-clicking on

it. To test this, double-click on one of the two code blocks that you have

added and then watch the kitten on the stage, and you’ll hear it meow and

display its message. Rather than having to double-click on the script to make

the kitten do its thing, let’s set things up so that the kitten automatically

meows and talks whenever you click on it. This is accomplished by clicking on

the Control button located at the top of the code block area and then dragging

and dropping the control block labeled when Cat clicked on top of the two

buttons you have already added to the sprite’s script, as demonstrated in

Figure 1.11.

The when Cat clicked block automatically snaps in place as you move it toward

the top of the script. With this block now in place, click on the script file and see

Creating Your First Scratch Application 17

Figure 1.9
Using a sound block to make the kitten meow.

what happens. As demonstrated in Figure 1.12, the kitten responds by meowing

and talking (displaying "Hello world!" in a text caption bubble).

Saving Your Work

Okay, now that you have your new Scratch application project working, it is time

to save your work. This is done by clicking on the Save button located at the top

of the Scratch IDE. In response, the Save Project window shown in Figure 1.13

displays, allowing you to assign a name to your project and store it on your

computer.

Type Hello World in the New Filename field to name your application. If you

want, you can type your name in the Project Author field and then enter a short

description in the About This Project field and then click on the OK button to

save your project.

18 Chapter 1 n Introducing Scratch

Figure 1.10
Using a looks block to make the kitten say something.

That’s it. At this point, you have gone through all of the steps necessary to create,

test, modify, execute, and then save a new Scratch application project. Now that

wasn’t too tough, was it? Before wrapping up this chapter, let’s spend a few

minutes learning about Scratch’s global community of users and how you can tap

in to learn more about Scratch.

Joining Scratch’s Global Community
Scratch is supported by a global community of students, teachers, schools, parents,

and computer enthusiasts and hobbyists. Scratch is available in many languages,

including English, Spanish, German, French, Italian, Hungarian, Hebrew, Polish,

Dutch, Romanian, and Russian. The Scratch website, located at http://scratch

.mit.edu and shown in Figure 1.14, helps bring together people from around the

world and facilitates the development of the Scratch community.

Joining Scratch’s Global Community 19

Figure 1.11
Using a control block to control script execution.

http://scratch.mit.edu
http://scratch.mit.edu

20 Chapter 1 n Introducing Scratch

Figure 1.12
Automating a sprite with a script.

Figure 1.13
Saving your new Scratch application project.

The Scratch website provides access to all kinds of resources that help Scratch

programmers learn more about the language. It provides access to online doc-

umentation and training videos. It also provides access to the help screen packed

with documentation on how to work with Scratch code blocks.

Sharing Your Application Projects

The Scratch website promotes application project sharing by allowing Scratch

programmers to upload their projects and make them available to anyone vis-

iting the website. This allows Scratch programmers to show off their work and to

learn from the work of others. In fact, every Scratch project that is uploaded to

the website can be downloaded and used as the basis for creating new projects. As

Joining Scratch’s Global Community 21

Figure 1.14
The Scratch website is the linchpin supporting the growth and interaction of the Scratch community.

Figure 1.15 shows, the Scratch website actively promotes Scratch applications

on its project page (http://scratch.mit.edu/channel/recent), which means

that you can expect to see any Scratch projects that you upload posted there as

well.

The Scratch website lets members post their uploaded Scratch projects in gal-

leries. You can post your Scratch projects in different galleries or create a gallery

of your own and even control whether anyone else is allowed to upload their

projects into it. As Figure 1.16 demonstrates, the Scratch website actively pro-

motes member galleries.

22 Chapter 1 n Introducing Scratch

Figure 1.15
The Scratch website facilitates sharing by promoting Scratch projects and making them available for
download.

http://scratch.mit.edu/channel/recent

If you decide to create your own gallery, you can customize it by assigning it a

name and a description and by determining whether you want to let anyone else

upload Scratch projects into it.

Registering with the Scratch Website

In order to upload your Scratch projects to the Scratch website, you must sign up

for a free account, which you can do by clicking on the sign up link at the top of

every page on the Scratch website. Clicking on this link opens the Create an

Account page, shown in Figure 1.17.

The Scratch website gives its members the ability to comment on any Scratch

application project that is uploaded to the website. The website also provides

Joining Scratch’s Global Community 23

Figure 1.16
You can create your own gallery and use it to promote your programming skills.

access to a collection of forums designed to host conversation between students,

teachers, and Scratch enthusiasts from all over the world.

No t e

You will learn more about how to share your Scratch projects when you get to Chapter 13,
‘‘Sharing Your Scratch Projects Over the Internet.’’

Keeping In Touch

In addition to facilitating project sharing and allowing comments to be posted

about projects, the Scratch website hosts a number of online forums at http://

scratch.mit.edu/forums/, as shown in Figure 1.18.

24 Chapter 1 n Introducing Scratch

Figure 1.17
Registering for a free account on the Scratch website.

http://scratch.mit.edu/forums/
http://scratch.mit.edu/forums/

As Figure 1.18 shows, forums have been set up to address the following range of

topics:

n Announcements

n Show and tell

n FAQ

n All About Scratch

n Educators

n Advanced Topics

Joining Scratch’s Global Community 25

Figure 1.18
Members of the Scratch community can communicate freely and discuss ideas using the forums hosted
on the Scratch website.

n Suggestions

n Troubleshooting

These forums provide the ability to learn directly from other Scratch pro-

grammers. By reading the discussions that are posted, you can learn new pro-

gramming techniques and find out about problems encountered by other

programmers and their solutions. Most important of all, you can post questions

and get answers to those questions.

Summary
This chapter has provided an overview of the Scratch language and it capabilities.

It showed you how to install Scratch on your computer and then demonstrated

how to create your first Scratch application. It also introduced you to the Scratch

website and explained the importance of setting up an account and becoming an

active member of the Scratch community.

26 Chapter 1 n Introducing Scratch

Getting Comfortable with
the Scratch Development
Environment

To become an effective Scratch programmer, you need to become intimately

familiar with its integrated development environment, or IDE. In this chapter,

you will learn about the stage on which applications execute and the sprite list

that Scratch uses to display and organize sprites used in your applications. You

will also learn how to work with editors that create scripts, costumes, and sound

effects. You will also learn all about Scratch’s paint program, which you can use

to create your own custom graphics files. By the time you have completed this

chapter, you will have a solid understanding of all of the features and capabilities

of the Scratch IDE and will be ready to begin using it to create your own Scratch

application projects.

An overview of the major topics covered in this chapter includes:

n How to work with menu and toolbar buttons

n How to add, remove, and modify the sprites that make up your Scratch

applications

n An explanation of the coordinates system used to control sprite placements

on the stage

n How to edit and modify scripts, costumes, and sounds

n How to create new sprites using Scratch’s built-in Paint Editor

27

chapter 2

Getting Comfortable with the Scratch IDE
Scratch is a graphical programming language. Scratch applications are created by

executing Scratch projects made up of different types of media, including gra-

phics and sound, using scripts made up of different code blocks. Scratch projects

are created using its IDE. As shown in Figure 2.1, Scratch’s IDE is composed of

numerous components.

28 Chapter 2 n Getting Comfortable

Project
Notes

Mouse
Coordinates

Sprite
List

Stage

Execution
ButtonsToolbar

Presentation
Mode

New Sprite
Buttons

Scripts AreaBlocks Palette

Current
Sprite InfoMenu Bar

Figure 2.1
The Scratch IDE facilitates the development and execution of Scratch applications.

Together, all of the components identified in Figure 2.1 provide a robust and

powerful, yet initiative and fun, work environment, providing everything needed

to develop Scratch applications. The rest of this chapter will offer a detailed overview

of each of the major components that make up the Scratch IDE.

Getting Familiar with Menu Bar Commands

Like most graphic applications, the Scratch IDE has a menu bar made up of a

collection of buttons located at the top of the IDE, as shown in Figure 2.2.

These buttons provide access to commands that allow you to create, open, and

save Scratch projects as well as share them on the Internet, undo previous

commands, change the language used by the IDE, andmuchmore. The following

list provides an explanation of each of the buttons that make up the menu bar.

n New. Creates a new Scratch application project.

n Open. Opens an existing Scratch application project.

n Save. Saves the current Scratch project (with a file extension of .sb).

n Save As. Saves the current Scratch project under a new name.

n Share! Uploads a copy of the project to the Scratch website (http://scratch

.mit.edu) where it can be made available for viewing and downloaded by

other Scratch programmers.

n Undo. Restores the last script, code block, or sprite deleted from the

application project during the current working session.

n Language. Lets you specify the language to be used by the Scratch

IDE.

n Extras.Displays a popup list from which you can select one of the following

commands: Import Project, Start Single Stepping, Compress Sounds, or

Compress Images.

Getting Comfortable with the Scratch IDE 29

Figure 2.2
The menu bar provides easy access to commands that you can use to create and save Scratch projects.

http://scratch.mit.edu
http://scratch.mit.edu

n Want Help? Displays a page that provides a link to the Scratch website as

well as to the following set of resources: Reference Materials, Tutorials, or

Frequently Asked Questions.

Most of the commands listed above are self-explanatory. However, the last three

commands merit additional explanation. When clicked, the Language button

displays a menu of programming languages from which you can select.

Depending on the language selected, a complete translation may be available. In

other cases, only scripts and code blocks may be translated.

T i p

You can display a tool tip for any of the button controls shown on the Scratch IDE by moving the
mouse pointer over the button.

When clicked, the Extras button displays a menu that has the following options.

n About. Displays a popup window that provides information about the

version of Scratch being used.

n Import Project. This command imports all of the sprites and backgrounds,

along with any related scripts, from the specified project into the current

project. As such, this command makes the sharing and movement of sprites

and backgrounds between Scratch projects a snap.

n Start Single Stepping. This command tells Scratch to execute an application

a step at a time, allowing you to observe the execution flow of code blocks.

This command will be discussed more thoroughly in Chapter 15, ‘‘Finding

and Fixing Program Errors.’’

n Compress Sounds. This command compresses any sound files used by the

current application project to reduce the project’s size. This is important

because the Scratch website imposes a 10MB limit on the size of Scratch

applications.

n Compress Images. Like the Compress Sounds command, this command

compresses any graphic image files used by the current application project

to reduce the project’s size. By compressing the size of your application,

you can sometimes reduce large Scratch projects enough to allow them to

upload.

30 Chapter 2 n Getting Comfortable

The last button on Scratch’s menu bar is the Want Help? button. When clicked,

this button opens a browser window that provides access to the following

resources.

n Getting Started. Opens the ‘‘Getting Started with Scratch’’ PDF user guide.

n Help Screens. Displays a collection of help screens that document the use

and purpose of every Scratch code block.

n Reference Guide. Opens the Scratch ‘‘Reference Guide’’ PDF reference file.

n Visit the Scratch support page. Displays the Scratch support web page

located at http://scratch.wik.is/Support.

Running Scratch Applications on the Stage

The stage is the area on the Scratch IDE, located in the upper-right side, as shown

in Figure 2.3, where your Scratch applications execute. The stage provides a place

for the sprites that make up your applications to interact with one another and

the user.

Getting Comfortable with the Scratch IDE 31

Figure 2.3
The stage provides the canvas upon which sprites are displayed and interact with one another.

http://scratch.wik.is/Support

The stage is 480 units wide and 360 units high. The stage is mapped out into a

logical grid using a coordinate system made up of an X-axis and a Y-axis, as

demonstrated in Figure 2.4.

As you can see, the X-axis runs from coordinates 240 to –240, and the Y-axis

coordinate runs from coordinates 180 to –180. The middle of the stage has a

coordinate location of (0, 0). Scratch keeps you informed of the pointer’s location

whenever it is moved over the stage by displaying its (X, Y) coordinate position in

the mouse x: and mouse y: fields just beneath the bottom-right side of the stage.

The stage can be assigned one or more backgrounds, allowing you to change its

appearance during application execution. By default, all Scratch applications are

assigned a blank background. You can add new backgrounds by clicking on the

Stage thumbnail, located on the left-hand side of the sprite list, and then clicking

on the Backgrounds tab located just above the scripts area. Like sprites, the stage

can be assigned its own scripts and sound effects.

T i p

If you right-click on an open area on the stage, a popup menu will appear, displaying the following
menu items:

n Grab screen region for new sprite. Makes a copy of a selected portion of the stage and uses
it to create a new sprite.

n Save picture of stage. Saves a copy of the stage as a .GIF file.

32 Chapter 2 n Getting Comfortable

Figure 2.4
Sprites are placed on the screen and moved around using a system of coordinates.

Running Applications in Presentation Mode

As you saw in Chapter 1 when you created the Hello World project, Scratch runs

your applications on the stage within the IDE by default. However, if you click on

the Presentation Mode button, located just beneath the bottom-left corner of the

stage, you can run your Scratch application project in Presentation mode. To see

how this works, click on the Open button located at the top of the Scratch IDE

and then locate and open the Hello World project. Next, click on the Pre-

sentation Mode button to switch to full-screen mode. Once in Presentation

screen mode, single-click on the sprite representing the kitten and watch as your

application executes, as demonstrated in Figure 2.5.

You can exit Presentation mode at any time either by clicking on the Exit Pre-

sentation Mode icon located just above the upper-left side of the stage or by

pressing the Escape key.

Controlling Application Execution

Whether running your application from the IDE’s stage or in Presentation mode,

you can automatically start any scripts that begin with the green flag control

block by clicking on the green flag button located in the upper-right corner of the

IDE, as shown in Figure 2.6. This same button is also available in Presentation

mode. By clicking on the red stop button located right next to the green flag

Getting Comfortable with the Scratch IDE 33

Figure 2.5
Running a Scratch application project in Presentation mode.

button, you can stop the execution of your applications any time you finish

working with them.

Working with the Sprite List

Scratch applications are made up of sprites that interact with one another as they

move around the stage. Each sprite that makes up a Scratch application is dis-

played as a thumbnail in the sprite list area, located on the lower-right portion of

the Scratch IDE, as shown in Figure 2.7. Although it has no impact on a Scratch

application, you can reorganize the order in which sprites are displayed in the

sprite list by dragging and dropping thumbnails to any location that makes sense

to you.

In addition to a thumbnail, Scratch also displays the name of each sprite as well as

the number of scripts and costumes belonging to each sprite. To work with a

sprite and edit its scripts, costumes, and sound effects, just click on its thumbnail.

The currently selected sprite is highlighted by a blue outline. Once selected, you

can click on the Scripts, Costumes, and Sounds tabs located at the top of the

script area to edit a sprite’s scripts, costumes, and sound effects.

34 Chapter 2 n Getting Comfortable

Figure 2.6
The green flag and red stop buttons provide control over script execution.

Figure 2.7
The sprite list displays a thumbnail for each sprite in an application.

If you right-click on a sprite’s thumbnail, the following list of menu options is

displayed:

n Show. Centers a sprite on the stage, placing it on top of all other sprites.

n Export this sprite. Exports a sprite as a file, making it available to be

imported into other Scratch projects.

n Duplicate. Makes a copy of the sprite.

n Delete. Removes a sprite from the project.

T i p

You can also export, duplicate, and delete sprites by right-clicking on any sprite on the stage and
then selecting the corresponding menu items that are displayed.

The sprite list also displays a thumbnail representing the application project’s

stage. When the stage’s thumbnail is selected, you can add scripts to the stage,

modify the stage’s background by assigning it one or more graphic files, and also

add sounds to the stage.

Generating New Sprites

Scratch makes it easy for you to work with sprites by providing three different

options for adding them to your applications. These options are accessed through

the New Sprite buttons located just below the stage, as shown in Figure 2.8.

When clicked, the Paint New Sprite button starts Scratch’s Paint Editor program.

This program provides everything you need to draw new sprites on a transparent

Getting Comfortable with the Scratch IDE 35

Get Surprise
Sprite

Choose New
Sprite from File

Paint New
Sprite

Figure 2.8
The New Sprite buttons provide access to tools for adding and creating new sprites.

background. You will learn the ins and outs of how to work with the Paint Editor

program a little later in this chapter.

When clicked, the Choose New Sprite from File button displays the New Sprite

window shown in Figure 2.9, providing access to different collections of graphic

files that you can add to your Scratch applications as sprites. To select and add a

sprite, all you have to do is to drill down into one of Scratch’s folders, find the

sprite you want, and then click on the OK button. The sprite that you selected

will then appear in the center of the stage, and a thumbnail representing the sprite

will be added to the sprite list.

The Get Surprise Sprite button randomly retrieves one of Scratch’s ready-made

sprites and adds it to your application project. It can be used to generate all kinds

of wacky projects.

Tracking Mouse Pointer Location

As you learn how to develop your own Scratch applications, you will need to keep

track of the initial placement and subsequent movement of sprites on the stage.

Scratch assists you in this task by keeping track of mouse-pointer movement

whenever you move the pointer across the stage (see Figure 2.10). You can use

36 Chapter 2 n Getting Comfortable

Figure 2.9
Scratch supplies easy access to a wide selection of ready-made sprites.

this information to identify the coordinates data that you need to incorporate

into your application code as you develop the programming logic that drives

your Scratch projects.

Working with the Scratch Toolbar

Another important component of the Scratch IDE is the toolbar, shown in Figure

Figure 2.11. The toolbar provides access to commands that you can use to

interact with and control the sprites that make up your applications.

The following list summarizes the functionality provided by each of the toolbar’s

buttons:

n Move. Allows you to drag and drop sprites to different locations on the stage

(default toolbar selection).

n Duplicate. Makes a copy of the currently selected sprite, including its

scripts, costumes, and sounds, providing an easy way of adding new sprites

to your applications. Once a sprite is duplicated, you can customize the

new copy of the sprite as you see fit.

n Delete. Removes a sprite, including all its scripts, costumes, and sounds,

from the project and removes its thumbnail from the sprite list.

Getting Comfortable with the Scratch IDE 37

Figure 2.10
The Scratch IDE makes it easy to track the mouse-pointer’s location when it moves around the stage.

Shrink
Sprite

Grow
Sprite

DeleteDuplicateMove

Figure 2.11
The Scratch toolbar provides tools for interacting with sprites.

n Grow Sprite. Increases a sprite’s size, in case its actual size does not meet the

needs of your application.

n Shrink Sprite. Decreases a sprite’s size, in case its actual size does not meet

the needs of your application.

By default, the Move button is always selected. However, you may select any of

the other toolbar buttons by clicking on them and then clicking on the sprite that

you want to work with.

Switching Between Code Block Groups

Like applications created by any programming language, Scratch applications

execute program code made up of collections of code blocks that manipulate

sprites and interact with the user. Scratch’s program code is organized into

scripts belonging to sprites. Every sprite in an application can be assigned one or

more scripts. In addition, the stage can also execute its own scripts.

As you have already seen, the first step in creating a script is to select the sprite (or

the stage) to which the script will belong. This is done by clicking on the appro-

priate thumbnail in the sprites list. You can then add code blocks by dragging the

blocks from the blocks palette and dropping them into the scripts area (when the

Script tab is selected). The blocks palette is organized into two sections. The top

section contains eight button controls, each of which represents a different cate-

gory of code block. Each of the buttons is color coded. The currently selected

button is easily identified because it is filled in with its assigned color. The left-hand

edge of the unselected buttons shows the color of the code blocks belonging to its

category. For example, Figure 2.12 shows how the blocks palette looks when the

Motion button has been selected.

T r i c k

You can right-click (Control-click on Mac OS X) on any code block and then select Help from the
resulting popup menu to get help information on any code block.

Getting Comfortable with the Scripts Area

The last major part of the Scratch IDE that you need to become familiar with is

the scripts area, which consists of two major sections. The Current Sprite Info

section, located at the top of the scripts area, displays information about the

currently selected sprite. The rest of the scripts area is controlled by three tabs,

which allow you to add scripts, costumes, and sounds to sprites.

38 Chapter 2 n Getting Comfortable

Examining Sprite Details

The Current Sprite Info section displays the name currently assigned to the

selected sprite, which, as demonstrated in Figure 2.13, is Sprite1. You can change

a sprite’s name by typing over it. The sprite’s current coordinates and direction

are displayed just beneath its name, and the sprite’s currently assigned costume is

displayed just to the left of its name.

Getting Comfortable with the Scratch IDE 39

Figure 2.12
Each category of code block is designed to accomplish a related set of tasks.

Figure 2.13
Changing a sprite’s name and viewing detailed information about the sprite.

Take note of the blue line that is displayed on the thumbnail in the Current Sprite

Info section. It shows the sprite’s currently assigned direction. You can change

the sprite’s direction by dragging the outside edge of this line to a new direction.

If you do not like the direction that you have set for the sprite, double-click on

the sprite to reset it back to its default direction (90-degree angle).

You can export the scripts as a stand-alone line by clicking on the Export button.

This opens the Export Sprite window shown in Figure 2.14, allowing you to

specify the location where you want to save the sprite, making it available for use

in other Scratch application projects.

Just beneath the Export button is a graphic file representing a padlock. Clicking

on this image toggles the graphic between a locked and unlocked state. When set

to locked, Scratch prevents the sprite from being dragged around the stage by the

user when the script is run in Presentation mode or when run from the Scratch

website.

Just to the left of the sprite’s currently selected costume are three buttons that you

can use to specify the sprite’s rotation style. These three buttons are mutually

exclusive, meaning that you can only select one. Table 2.1 identifies the rotational

style represented by each of these buttons.

40 Chapter 2 n Getting Comfortable

Figure 2.14
Exporting a sprite as a stand-alone graphic file.

T i p

To get a better feel of the effect that Scratch’s rotational buttons have on a sprite, click on each of
them and observe the rotational movement of the sprite costume in the Current Sprite Info section.

Editing Scripts

As you have already seen, Scratch scripts are created by dragging code blocks

from the blocks palette onto the scripts area (when the Scripts tab has been

selected). Of course, the code blocks must be added in a manner that makes

logical sense, which is what Chapters 5 through 22 are designed to teach you.

T i p

As you add new scripts and modify existing ones, it is easy to leave the scripts area in a mess. One
way of dealing with this situation it to spend a few minutes dragging and dropping scripts so that
they line up and are evenly spaced. However, a much faster and easier option is to right-click on a
free area within the scripts area and then click on the clean-up option located in the popup menu
that is displayed. In response, Scratch will realign all of your scripts for you.

Adding Costumes

A sprite can have one or more costumes, allowing it to change its appearance as

an application executes. A sprite must have at least one costume. For example,

Figure 2.15 shows a sprite that has two costumes. Each costume is assigned a

unique name and number (displayed just to the left of the costume’s image).

By default, Scratch only displays a sprite’s first costume. You can drag and drop

costumes to change their position in the list. When moved, the number assigned

to the costume is automatically changed as well.

Scratch gives you three different ways of adding new costumes to sprites. For

starters, you can click on the Paint button. This opens the Paint Editor program,

Getting Comfortable with the Scratch IDE 41

Table 2.1 Sprite Rotational Buttons

Button Name Description

Can rotate Rotates the sprite’s costume by 360 degree when the sprite’s
direction is changed.

Only face left-right Toggles the direction that the sprite’s costume faces from left to
right and vice versa.

Don’t rotate Maintains the sprite costume’s current direction.

which you can use to draw a new costume. You can also add a new costume to a

sprite by clicking on the Import button and specifying an image file from a folder

on your computer. Lastly, you can drag and drop an image file from the Internet

or your desktop onto the scripts area when the Costumes tab is selected.

No t e

Scratch can work with different types of graphic files, including GIF, JPG, BMP, and PNG files. Scratch
can also work with animated GIF files. An animated GIF file is a graphic made up of two or more
frames, each of which is displayed as an automated sequence when the GIF file is displayed.

Once added, you can modify a costume by selecting it and clicking on the Edit

button, which opens the Paint Editor. You can also add a new costume to a sprite

by selecting an existing costume and then clicking on the Copy button. Once the

copy of the costume has been added, you can click on its Edit button, allowing

you to modify it using the Paint Editor.

You can delete a costume from a sprite by selecting it and then clicking on the

round Delete button to the right of the Copy button. You can also turn a costume

into a sprite or export it as a stand-alone costume by right-clicking on it and

selecting the appropriate option from the popup menu that appears.

42 Chapter 2 n Getting Comfortable

Figure 2.15
Importing and assigning a sound file to a sprite.

No t e

The stage can be assigned a graphic to be used as a background upon which the application’s
sprites are displayed. In fact, the stage can be assigned a series of backgrounds, allowing an
application to change backgrounds during application execution. To view, edit, and make a copy
of a background, select the stage thumbnail located in the sprite list. When you do this, the
Costumes tab in the scripts area changes to the Backgrounds tab, allowing you to modify and
work with application backgrounds. From here you can also create new backgrounds yourself by
clicking on the Paint button. This opens Scratch’s Paint Editor program, discussed later in this
chapter, allowing you to create any background you want. You can also click on the Import button
to add an external graphic file to your application as a background.

Adding Sound Effects

Just as sprites can have different costumes, you can also assign one or more sounds

to them (or to the stage), which can be played during application execution, either as

background music or noise or as sound effects during game play. Scratch can play

backMP3 files as well asmostWAV, AU, andAIF audio files. To view the sound files

associatedwith a sprite or to record or import a new file, select the sprite’s thumbnail

in the sprite list and then click on the Sounds tab in the scripts area. A list of the

sound files belonging to the sprite is displayed, as demonstrated in Figure 2.16.

Getting Comfortable with the Scratch IDE 43

Figure 2.16
Adding and editing sound files.

Once the Sounds tab has been selected, you can perform any of the following

actions on any sound files that belong to the sprite:

n Change the name used to refer to the sound within the application.

n Click on the Play button to listen to the sound.

n Click on the Stop button to halt sound playback.

n Click on the Delete button to remove the sound from the application project.

In addition to interacting with a sprite’s existing sound file, you may add new

sound files by clicking on the Record button. In response, the Sound Recorder

window appears, as shown in Figure 2.17, allowing you to record and save a new

sound file. Of course, to record your own sound files, your computer will need to

have a microphone.

You can also add new sound files to your Scratch application by clicking on the

Import button, which opens the Import Sound window, as shown in Figure 2.18,

allowing you to select a sound file. Scratch provides access to tons of prerecorded

sound files. By default, the Import Sound window displays a listing of folders

containing different collections of sound files.

Keeping Project Notes

Another important feature of the Scratch IDE is the ability to add and update

project notes. Scratch allows you to add project notes when you first save your

application project. Once they are saved, you may update your project’s notes at

any time by clicking on the Project Notes icon located in the upper-right corner of

the IDE. In response, the Project Notes window displays, as demonstrated in

Figure 2.19.

44 Chapter 2 n Getting Comfortable

Figure 2.17
Recording a new audio file to be used as part of a Scratch application.

Getting Comfortable with the Scratch IDE 45

Figure 2.18
Importing and assigning a sound file to a sprite.

Figure 2.19
Viewing and updating Scratch application project notes.

The Project Notes window operates like a simple Notepad program, allowing you

to type in any text you want.

T i p

Use the Project Notes window to help document your Scratch applications, leaving behind
information that explains the application’s purpose and why you designed it the way you did. If
you plan on uploading your project to the Scratch website, then project notes take on additional
value. Specifically, text saved as notes is displayed on the same web page as your project and can
therefore provide instructions for running your application.

Creating New Sprites Using Scratch’s Paint Editor
In addition to using the sprites supplied with Scratch and graphics that you

acquire from the Internet, you can always create your own sprite using any

graphic/paint program. Although it does not have all of the bells and whistles that

applications like Corel Paint Shop Pro or Adobe Photoshop have, Scratch’s built-in

Paint Editor, shown in Figure 2.20, offers everything needed to draw or modify

graphics for use as sprites and backgrounds.

As Figure 2.20 demonstrates, Scratch’s Paint Editor is divided into multiple

components. Thanks to Scratch’s cross-platform design, the Paint Editor looks

and operates identically on both Microsoft Windows and Mac OS X.

Examining the Drawing Canvas

Links to the Paint Editor program are located just under the stage and within the

Costumes and Backgrounds tabs located in the scripts area. The Paint Editor

program can be used to create or modify new sprites, costumes, and back-

grounds. Most of the space on the Paint Editor’s window is dedicated to a

drawing canvas. To draw on the canvas, you select different drawing commands

from the toolbar and then use the mouse to draw on the canvas. You can work

with different colors and apply a range of special effects.

If the size of the graphic being worked on exceeds the available area, scrollbars are

enabled on the right-hand side and the bottom of the drawing canvas, allowing

you to view all parts of the graphic. You can also use the Zoom In and ZoomOut

buttons located at the bottom of the Paint Editor window to temporarily increase

or decrease the magnification of the drawing canvas.

46 Chapter 2 n Getting Comfortable

Working with the Toolbar and Options Area

When creating or editing a graphic image on the drawing canvas, the buttons

located on the Paint Editor’s toolbar provide access to essential features and

functionality. The following list offers an overview of the functionality provided

by each toolbar button:

n Paintbrush. Allows you to draw freehand on the drawing canvas using the

current foreground color and brush size.

n Eraser.Allows you to erase selected portions of the drawing canvas using the

current eraser size. Erased portions of the drawing canvas are returned to a

transparent state.

Creating New Sprites Using Scratch’s Paint Editor 47

Slider
Controls

Drawing
Canvas

Button
Controls

Rotation
Control

Color
Palettes

Options
Area

Toolbar

Current
Color

Settings

Zoom
Control

Figure 2.20
Scratch’s built-in Paint Editor program provides everything needed to create sprites and costumes.

n Fill. Allows you to fill in enclosed areas with either a gradient or a solid

color, depending on the selected option specified in the options area.

n Rectangle. Allows you to draw filled-in or outlined rectangle shapes using

the current foreground color.

n Ellipse. Allows you to draw filled-in or outlined ellipses using the current

foreground color.

n Line. Allows you to draw straight lines using the current foreground color.

n Text. Allows you to include text as part of a drawing using the current font

type and size.

n Selection. Allows you to select a rectangular portion of the drawing canvas

and move it to a different part of the drawing canvas (cut and paste).

n Stamp. Allows you to select a rectangular portion of the drawing canvas and

copy it to different parts of the drawing canvas (copy and paste).

n Eyedropper. Allows you to select the foreground color.

Most of the toolbar buttons accept configuration options that further refine the

functionality provided by the button control. For example, Figure 2.21 shows the

four configuration options that are provided when the Fill button has been selected.

These options set the fill style that is applied and include the application of a solid

color and the use of a horizontal gradient, vertical gradient, or radial gradient.

No t e

A gradient is a color created by blending together the foreground and background colors.

48 Chapter 2 n Getting Comfortable

Figure 2.21
The content of the options area changes based on the selected toolbar button.

Working with Button Controls

As shown in Figure 2.22, Scratch’s Paint Editor program includes a number of

button controls that can initiate an assortment of different actions.

The following list identifies each of these buttons and explains its purpose:

n Import. Opens an image from a graphic file stored on your computer.

n Grow. Increases the size of the drawing canvas, allowing you to focus in on a

particular area.

n Shrink. Decreases the size of the drawing canvas.

n Rotate counterclockwise. Rotates the drawing canvas counterclockwise.

n Rotate clockwise. Rotates the Drawing canvas clockwise.

n Flip horizontally. Flips the drawing canvas horizontally.

n Flip vertically. Flips the drawing canvas vertically.

n Clear canvas. Clears any graphics currently displayed on the drawing canvas.

n Undo. Undoes the last action that you performed in the Paint Editor.

n Redo. Redoes the last undone action.

Creating New Sprites Using Scratch’s Paint Editor 49

Rotate
Clockwise

Rotate
Counterclockwise

RedoUndo

Grow Flip
Horizontally

Import Shrink
Flip

Vertically
Clear

Canvas

Figure 2.22
The Paint Editor provides access to key functionality through various button controls.

Specifying Color Settings

The Paint Editor lets you specify current color settings for both foreground and

background drawing using the current Color Settings control located on the left-

hand side of the Paint Editor window, just under the options area. To set the

current foreground color, click on the top square and then select a color from one

of the color palettes that are displayed beneath the control. Likewise, you can set

the current background color by selecting the bottom square and then selecting a

color from one of the color palettes.

Configuring a Sprite’s Rotation Center

One final but very important Paint Editor feature that you definitely need to

know how to use is the Set Rotation Center button located in the lower-left

corner of the Paint Editor window. When clicked, this button displays a set of

cross-hairs on the Paint Editor’s drawing canvas, as demonstrated in Figure 2.23.

You can then use drag and drop to move the cross-hair over the portion of the

sprite that you want to set up as the sprite’s rotational center when the sprite is

rotated on the stage.

50 Chapter 2 n Getting Comfortable

Figure 2.23
Cross-hairs make it easy to set a sprite’s rotational center.

The sprite shown in Figure 2.23 is that of a rock that might be used in a space

shooter game like Asteroids. In this type of game, the asteroid would move

around the screen, threatening to destroy the player’s ship by colliding with it. To

provide a realistic look and feel, you might want to tell Scratch to rotate the rock

as its moves around the screen. By setting up the rock’s rotation point as the

center of the sprite, it will appear to rotate or spin around its center. On the other

hand, by settings its rotation point to be one of the edges of the rock, you can

make it rotate in a more wobbly manner.

Summary
This chapter has introduced you to the Scratch IDE and provided a step-by-step

overview of all of its major components and functionality. You learned how to

work with its menu and toolbar buttons. You learned how to add and delete

sprites as well as how to add scripts, costumes, and sounds to sprites. This chapter

explained the coordinates system used to control the placement of sprites on the

stage. On top of all this, this chapter also provided an overview of Scratch’s Paint

Editor program and outlined all of its major features and functionality.

Summary 51

This page intentionally left blank

A Review of the Basic
Components of Scratch
Projects

As you have already seen, Scratch application projects are comprised of back-

grounds and sprites. Sprites interact and move about the stage under the pro-

grammatic control of scripts made up of code blocks. This chapter will explain

the three basic types of code blocks and how they work together to create scripts.

It will also review the eight categories into which all Scratch’s 100-plus code

blocks are grouped. Although this chapter does not offer an in-depth review of

each individual code block, it will provide a series of tables that you can book-

mark and use as a quick reference when developing new Scratch applications.

An overview of the major topics covered in this chapter includes:

n A detailed explanation of stack blocks, hat blocks, and reporter blocks

n A demonstration of how to work with and configure monitors

n A review of all 100-plus code blocks that make up Scratch scripts

n An explanation of how to display help information for individual code

blocks

Working with Blocks and Stacks
To bring the backgrounds and sprites that make up Scratch applications to life,

youmust create scripts. Scripts are created by dragging and dropping code blocks

from the blocks palette to the scripts area and snapping them together, creating

53

chapter 3

stacks. Scripts can be run by double-clicking on one of the code blocks. Scripts

can also be configured to automatically execute when predefined events occur.

You can drag a code block around the scripts area. As demonstrated in Figure 3.1,

when you drag a block near other blocks, a white indicator bar appears to designate

locations where a valid connection can bemade. Code blocks can be snapped to the

top and bottom of stacks or inserted into the middle of the stack.

You can move code stacks by clicking on their uppermost blocks and dragging

them to a new location. If you drag a block from the middle of a stack, all of the

code blocks underneath it are dragged out as well.

T i p

You can copy a stack of code blocks from one sprite to another by dragging and dropping the
stack onto the thumbnail of a sprite located in the sprite list.

54 Chapter 3 n A Review of the Basic Components of Scratch Projects

White Indicator
Bar

Figure 3.1
Use the visual indicator to determine valid connection points.

Three Basic Types of Scratch Blocks
Scratch applications are made up of sprites that interact with one another and the

user. Sprites are controlled and animated by scripts. Sprites can have any number

of scripts, each of which is designed to perform a specific task or action. Scripts

are made up of one of more Scratch code blocks. In total, there are more than 100

different Scratch blocks, each of which is designed to fulfill a specific purpose.

These blocks can be broadly classified into three categories, as outlined here:

n Stack blocks

n Hat blocks

n Reporter blocks

Working with Stack Blocks

The majority of code blocks provided by Scratch are stack blocks. Stack blocks are

code blocks with a notch at the top or a bump at the bottom. The notches and

bumps serve as visual indicators that identify how the blocks can be snapped

together to create programming logic. Figure 3.2 shows an example of a typical

stack block.

The notch on the top indicates that the code block can be attached to the

underside of another code block. The bump at the bottom of the code block

allows other code blocks to attach to its underside. Figure 3.3 shows an example

of another stack block. This block will repeatedly execute any code blocks that

you choose to embed inside it for as long as a tested condition evaluates as true.

No t e

You will learn about the application of repetitive and conditional programming logic in Chapter 9.

Three Basic Types of Scratch Blocks 55

Figure 3.2
An example of a code block that is used to halt the playback of an audio file.

Figure 3.3
This code block allows other stack blocks to be embedded within it.

Some stack blocks include an input area inside them that allows you to specify a

value by typing in a number. For example, the stack block shown in Figure 3.4

lets you assign the color to be used when drawing by inserting a color-associated

numeric value.

To modify the value assigned to a block like the one shown in Figure 3.4, click on

the white area within the code block and type in a new value. Some code blocks

56 Chapter 3 n A Review of the Basic Components of Scratch Projects

Editable Text
Field

Figure 3.4
This code block is used to specify the color to be used when drawing.

Figure 3.5
This code block has a pull-down menu that you can use to configure how it operates.

let you configure them by selecting a value from a pull-down list, as demon-

strated in Figure 3.5.

Working with Hat Blocks

A hat block is a code block with a rounded or curved top and a bump at the

bottom, visually indicating that it can be snapped on top of other stack blocks.

Hat blocks provide the ability to create event-driven scripts. An event-driven

script is one that automatically executes when a specified event occurs. An

example of an event that can automatically trigger script execution is when the

user clicks on the green flag button. When this event occurs, any scripts that

begin with the hat block shown in Figure 3.6 are automatically executed.

Script execution can also be triggered when the user clicks on a sprite. This can be

set up by adding the code block shown in Figure 3.7 to the beginning of the script.

No t e

Every sprite in an application can potentially have its own scripts. You can automate the execution
of any or all of the scripts using hat blocks. In addition to sprites, the stage can also have scripts.

Working with Reporter Blocks

A third type of Scratch code block is a reporter block. A reporter block is a code

block that has either rounded or angled sides and is specifically designed as a

mechanism for providing input for other code blocks to process. For example,

the code block shown in Figure 3.8 is a typical reporter block.

Three Basic Types of Scratch Blocks 57

Figure 3.6
This hat block automatically runs a script when the user clicks on the green flag.

Figure 3.7
This hat block runs a script whenever the user clicks on the sprite to which this script belongs.

Figure 3.8
This code block retrieves a numeric value indicating a sprite’s volume.

As you can see, this reporter block has rounded sides. As such, it can only fit into

code blocks like the one shown in Figure 3.9, whose input area displays a shape

with rounded sides.

Figure 3.10 shows an example of a reporter block that has angled sides. This

particular code block returns a value of true if the user has pressed the spacebar or a

false if the spacebar has not been pressed. Because it has angled sides, it can only be

embedded inside code blocks that contain an input areawhose sides are also angled.

No t e

Boolean is a term used to represent data that has one of two values, either true or false.

To take advantage of a reporter block like the one shown in Figure 3.10, you need

to embed the reporter block into another code block that has been designed to

work with it. For example, Figure 3.11 shows one such code block.

Figure 3.12 demonstrates how a reporter blocks looks after being embedded

within another code block.

Keeping an Eye Out with Monitors
You have probably noticed that Scratch displays a small check box just to the left

of certain code blocks in the blocks palette, as demonstrated in Figure 3.13.

58 Chapter 3 n A Review of the Basic Components of Scratch Projects

Figure 3.9
You can provide input to this code block by either keying it in or using a reporter block.

Figure 3.10
Angled report blocks pass Boolean data to other code blocks for processing.

Figure 3.11
This code block pauses script execution until a specified event is true.

Figure 3.12
This particular combination of code blocks will pause script execution until the user presses the spacebar.

The presence of a check box indicates that the code block is capable of displaying

amonitor on the stage. Amonitor is a small block that displays the value currently

assigned to the code block. To display the monitor, just click on the check box to

select it. When you do so, a gray block is automatically displayed on the stage, as

demonstrated in Figure 3.14.

You can modify the way the monitor looks by right-clicking on it and selecting

Large Readout from the popup menu that appears. As a result, the appearance of

the monitor will change, as demonstrated in Figure 3.15.

T i p

You can also toggle between monitor formats by double-clicking on the monitor.

Variable-based monitors support a third format, which includes a slider bar, as

demonstrated in Figure 3.16. You will learn about variables and their use in

Chapter 7, ‘‘Storing and Retrieving Data.’’

Keeping an Eye Out with Monitors 59

Figure 3.13
An example of a code block capable of displaying a monitor on the stage.

Figure 3.14
By default, a monitor displays the name of its associated code block.

Figure 3.15
Monitors can be configured to display a large readout.

Figure 3.16
Variable monitors also support a display format that includes a slider bar.

Eight Categories of Scratch Blocks
Scratch provides access to over 100 code blocks. These code blocks are organized

into eight categories and are made available on the blocks palette. Each of these

categories of code blocks is described in the following list:

n Motion. Code blocks that control sprite placement, direction, rotation, and

movement.

n Looks. Code blocks that affect sprite and background appearance and

provide the ability to display text.

n Sound. Code blocks that control the playback and volume of musical notes

and audio files.

n Pen. Code blocks that can be used to draw using different colors and pen

sizes.

n Control. Code blocks that trigger script execution based on predefined

events, repeatedly execute programming logic using loops, and perform

conditional logic.

n Sensing. Code blocks that can be used to determine the location of the

mouse-pointer, its distance from other sprites, and whether a sprite is

touching another sprite.

n Numbers. Code blocks that perform logical comparisons, rounding, and

other arithmetic operations.

n Variables. Code blocks that can be used to store data used by applications

when they execute.

You can view the code blocks belonging to a given category by clicking on one of

the eight labeled button controls at the top of the blocks palette. Note that each

category of code block is color coded, making it easy to distinguish between code

blocks from different categories.

Each of these categories of code blocks is reviewed in the sections that follow.

This review covers Scratch’s entire collection of code blocks, indicating

which ones support monitors and providing a brief description of each block’s

usage.

60 Chapter 3 n A Review of the Basic Components of Scratch Projects

Moving Objects Around the Drawing Canvas

Motion blocks control a sprite’s placement on the stage. Motion blocks are

colored blue. There are motion blocks that let you set the direction a sprite will

move and then other blocks to move them. There are also motions blocks that

report on a sprite’s location and direction. Table 3.1 outlines all of the code

blocks that fit into this category.

Eight Categories of Scratch Blocks 61

Table 3.1 Scratch Motion Blocks

Block Monitor Description

No Moves a sprite forward or backwards a specified number
of steps.

No Rotates a sprite a specified number of degrees in a
clockwise direction.

No Rotates a sprite a specified number of degrees in a
counterclockwise direction.

No Points a sprite toward a specified direction (0 = up, 90 =
right, ---90 = left, 180 = down).

No Points a sprite toward either the mouse-pointer or a
specified sprite.

No Moves a sprite to a specified coordination location on the
stage.

No Moves a sprite to the location of either the mouse-pointer
or another sprite.

No Moves a sprite to the specified coordinate position over a
specified number of seconds.

No Changes the position of a sprite on the X-axis by a
specified number of pixels.

No Changes a sprite’s location on the X-axis to a specified
value.

No Changes the position of a sprite on the Y-axis by a
specified number of pixels.

No Changes a sprite’s location on the Y-axis to a specified
value.

No Changes a sprite’s direction when it makes contact with
one of the edges of the stage.

Yes Retrieves a value representing a sprite’s coordinate on the
X-axis (between ---240 and 240).

Yes Retrieves a value representing a sprite’s coordinate on the
Y-axis (between ---180 and 180).

Yes Retrieves a value representing a sprite’s current direction
(0 = up, 90 = right, ---90 = left, 180 = down).

You will learn more about motion blocks in Chapter 5, ‘‘Moving Things

Around.’’

Changing Object Appearance

Looks blocks modify sprite and background appearance and display text within

popup bubbles. Looks blocks are colored purple. There are looks blocks that let

62 Chapter 3 n A Review of the Basic Components of Scratch Projects

Table 3.2 Scratch Looks Blocks

Block Monitor Description

No Changes a sprite’s costume, modifying its
appearance.

No Changes a sprite’s costume to the next costume
in the sprite’s costume list, jumping back to the
beginning of the list when the end of the list is
reached.

Yes Retrieves a numeric value representing a sprite’s
current costume number.

No Displays a text message in a speech bubble
for a specified number of seconds.

No Displays a text message in a speech bubble
or removes the display of a speech
bubble when no text is specified.

No Displays a text message in a thought bubble
for a specified number of seconds.

No Displays a text message in a thought bubble
or removes the display of a thought
bubble when no text is specified.

No Modifies a sprite’s appearance by applying and
modifying a special effect (color, fisheye, whirl,
pixelate, mosaic, brightness, or ghost) by a
specified numeric value.

No Applies a special effect (color, fisheye, whirl,
pixelate, mosaic, brightness, or ghost) to a sprite
by a specified numeric value.

No Restores a sprite to its normal appearance,
removing any special effects that may have been
applied.

you modify sprite costumes and colors. There are also blocks that let you modify

a sprite’s size and control whether a sprite is visible on the stage. Table 3.2

outlines all of the code blocks that fit into this category.

You will learn more about looks blocks in Chapter 10, ‘‘Changing the Way

Sprites Look and Behave.’’

Making Some Noise

Sound blocks play music and add sound effects to your Scratch application

projects. Sound blocks are colored pink. There are sound blocks that let you play

sounds and drum beats, select different types of instruments, control playback

volume, and modify tempo. Table 3.3 outlines all of the code blocks that fit into

this category.

Eight Categories of Scratch Blocks 63

Block Monitor Description

No Modifies the size of a sprite by a specified
numeric amount.

No Sets a sprite’s size to a percentage of its original
size.

Yes Retrieves a percentage value representing a
sprite’s current size when compared to its
original size.

No Tells Scratch to display a sprite.

No Suppresses the display of a sprite on the stage,
preventing it from interacting with other sprites.

No Places a sprite on top of other sprites, placing it
on the top layer and ensuring its display.

No Moves a sprite back a specified number of layers,
allowing other sprites to be displayed on top of
it.

No Alters the stage’s appearance by assigning it a
different background.

No Changes the stage’s background to the next
background in the background list.

No Retrieves a numeric value representing the
background number of the stage’s current back-
ground.

Table 3.2 (Continued)

You will learn more about sound blocks in Chapter 11, ‘‘Spicing Things Up with

Sounds.’’

Drawing Lines and Shapes

Pen blocks draw any combination of shapes and lines using a virtual pen. Pen

blocks are colored mint green. There are pen blocks that let you enable and

disable drawing, set color and pen size, and apply shading. Table 3.4 outlines all

of the code blocks that fit into this category.

You will learn more about pen blocks in Chapter 12, ‘‘Drawing Lines and

Shapes.’’

64 Chapter 3 n A Review of the Basic Components of Scratch Projects

Table 3.3 Scratch Sound Blocks

Block Monitor Description

No Plays the specified sound file while allowing the script file
in which it is inserted to keep executing.

No Plays the specified sound file, pausing script execution
until the sound file has finished playing.

No Halts the playback of any sound files currently being
played.

No Plays a drum sound selected from the block’s pull-down
menu a specified number of seconds.

No Pauses sound playback for a specified number of beats.

No Plays a musical note selected from the block’s pull-down
menu a specified number of beats.

No Specifies the instrument to be used when playing musical
notes.

No Changes a sprite’s volume by a specified value.

No Sets a sprite’s sound volume to a specified percentage
level.

Yes Retrieves a numeric value representing a sprite’s sound
volume.

No Alters a sprite’s tempo by a specified number of beats per
minute.

No Assigns the number of beats per minute to be used as a
sprite’s tempo.

Yes Retrieves a numeric value representing a sprite’s tempo.

Looping, Conditional Logic, and Event Programming

Control blocks automate the execution of scripts, pause script execution, and send

messages to other sprites, allowing sprites to synchronize their execution. There are

also control blocks that let you set up loops to repeatedly execute collections of

code blocks as well as control blocks that let you conditionally execute other code

blocks based on whether or not a test condition evaluates as true. Control blocks

are colored gold. Table 3.5 outlines all of the code blocks that fit into this category.

You will learn more about control blocks in Chapter 9.

Sensing Sprite Location and Environmental Input

Sensing blocks determine the location of the mouse-pointer, its distance from

other sprites, and whether a sprite is touching another sprite. Sensing blocks are

Eight Categories of Scratch Blocks 65

Table 3.4 Scratch Pen Blocks

Block Monitor Description

No Erases or clears away anything drawn by the pen or stamped
from the stage.

No Places the pen in a down position, allowing drawing operations
to occur as the pen is moved around the stage.

No Disables drawing operations by lifting the pen.

No Specifies the color to be used when drawing.

No Changes the color used when drawing by a specified amount.

No Specifies the color to be used when drawing based on a numeric
range in which 0 is red (at the low end of the spectrum) and 100
equals blue (at the high end of the spectrum).

No Modifies the shading used when drawing by a specified amount.

No Specifies the shade to be used when drawing based on a numeric
range in which 0 is the darkest possible shading and 100
represents the maximum possible amount of light.

No Modifies the thickness of the pen based on a numeric increment.

No Specifies the thickness or width of the pen used when drawing.

No Draws or stamps the image of a sprite onto the stage.

66 Chapter 3 n A Review of the Basic Components of Scratch Projects

Table 3.5 Scratch Control Blocks

Block Monitor Description

No Executes the script to which it has been attached whenever
the IDE’s green flag button is pressed.

No Executes the script to which it has been attached whenever
a specified keyboard key is pressed.

No Executes the script to which it has been attached whenever
the user clicks on the sprite to which the script belongs.

No Pauses script execution for a specified number of seconds,
after which the script resumes its execution.

No Repeatedly executes all of the code blocks embedded inside
it.

No Repeats the execution of all the code blocks embedded
inside it a specified number of times.

No Specifies a broadcast message to all sprites without pausing
script execution.

No Sends a broadcast message to all sprites to trigger a
predefined action and then pauses script execution, waiting
until all sprites have completed their assigned action before
allowing the script in which the block resides to continue
executing.

No Executes the scripts to which it has been attached when a
specified broadcast message is received.

No Repeatedly executes all of the code blocks embedded within
the control for as long as the specified condition evaluates
as true.

No Executes all of the code blocks embedded within the control
if the specified condition evaluates as true.

No Executes all of the code blocks embedded in the top half of
the control (between the If an Else) if the specified condition
evaluates as true and executes all of the code blocks
embedded in the bottom half of the control (after Else) if
the condition evaluates as being false.

No Pauses script execution until a specified condition becomes
true.

No Repeats all of the code blocks embedded inside it for as
long as a tested condition evaluates as true.

colored sky blue. There are sensing blocks that can be used to interact with

Scratch boards, allowing applications to detect when the sensor board’s buttons

or slider are being pressed. Table 3.6 outlines all of the code blocks that fit into

this category.

No t e

A Scratch board is a special piece of hardware that you can purchase from the Scratch website
and attach to your computer. Once it is attached, you can use a sensor board to collect and
process environment- and user-provided input. You will learn how to programmatically interact
with and control Scratch boards in Chapter 14, ‘‘Collecting External Input Using a Scratch Sensor
Board.’’

You will learn more about sensing blocks in Chapter 6, ‘‘Sensing Sprite Position

and Controlling Environmental Settings.’’

Working with Numbers

Numbers blocks perform arithmetic operations, generate random numbers, and

compare numeric values to determine their relationship to one another. Num-

bers blocks are green. There are numbers blocks that can be used to round

numeric values and to execute a host of mathematical functions like determining

absolute value or square root of a number. Table 3.7 outlines all of the code

blocks that fit into this category.

You will learn more about number blocks in Chapter 8, ‘‘Doing a Little Math.’’

Storing and Retrieving Data

Variables blocks store and retrieve numeric values in computer memory. You will

need to use variables to store data as your application executes. For example,

if you create a game that challenges the player to try and guess a randomly

Eight Categories of Scratch Blocks 67

Block Monitor Description

No Halts a script’s execution.

No Halts the execution of all scripts for all sprites in the
application.

Table 3.5 (Continued)

generated number, you will need to use a variable to store and refer back to this

number.

Variables can be used in conjunction with conditional programming logic to

control the execution of other code blocks. Variables can also be used to control

68 Chapter 3 n A Review of the Basic Components of Scratch Projects

Table 3.6 Scratch Sensing Blocks

Block Monitor Description

No Retrieves the location of the mouse-pointer on the X-axis.

No Retrieves the location of the mouse-pointer on the Y-axis.

No Retrieves a Boolean value of true or false, depending on
whether a mouse button is pressed.

No Retrieves a Boolean value of true or false, depending on
whether a specified key is pressed.

No Retrieves a Boolean value of true or false, depending on
whether the sprite is touching a specified sprite, edge, or
mouse-pointer as selected from the block’s pull-down
menu.

No Retrieves a Boolean value of true of false, depending on
whether the sprite is touching a specified color.

No Retrieves a Boolean value of true of false, depending on
whether the first specified color inside the sprite is touching
the second specified color on the background or on another
sprite.

No Retrieves a numeric value representing a sprite’s distance
from another sprite or from the mouse-pointer.

No Resets the timer back to its default value of zero.

Yes Retrieves a numeric value representing the number of
seconds that the timer has run.

No Retrieves the property value (x position, y position,
direction, customer #, and size of volume) for the
background of a specified sprite.

Yes Retrieves a numeric value, from 1 to 100, representing the
volume of the computer’s microphone.

Yes Retrieves a Boolean value of true or false when a sound
value of 30 or greater is detected through the computer’s
microphone.

Yes Retrieves the value being reported by one of the sensors on
a Scratch board.

Yes Retrieves a Boolean value of true or false, depending on
whether a specified sensor is being pressed.

the repeated execution of code blocks embedded within code block loops.

Variables blocks are colored orange. You can create and name custom variables

blocks and assign them a starting value. You can also modify their values during

script execution. Other code blocks can retrieve variable values and use them as

input. Table 3.8 outlines all of the code blocks that fit into this category.

You will learn more about variables blocks in Chapter 7.

Eight Categories of Scratch Blocks 69

Table 3.7 Scratch Numbers Blocks

Block Monitor Description

No Adds two numbers together and generates a result.

No Subtracts one number from another and returns the result.

No Multiplies two numbers together and generates a result.

No Divides one number into another and returns the result.

No Generates a random number within the specified range.

No Returns a Boolean value of true or false, depending on
whether one number is less than another.

No Returns a Boolean value of true or false, depending on
whether one number is equal to another.

No Returns a Boolean value of true or false, depending on
whether one number is greater than another.

No Returns a Boolean value of true or false, depending on
whether two separately evaluated conditions are both
true.

No Returns a Boolean value of true or false, depending on
whether either of two separately evaluated conditions is
true.

No Reverses the Boolean value from true to false or false to
true.

No Retrieves the remainder portion of a division operation
between two numbers.

No Returns the nearest integer value for a specified number.

No Returns the result of the selected function (abs, sqrt, sin,
cos, tan, asin, acos, atan, Ln, log, E^, and 10^) when
applied to the specified number.

Getting Help with Code Blocks
In addition to bookmarking and referring back to the tables provided in this

chapter to find out what a given code block does, you can view help information

for any Scratch code block by right-clicking on the code block in the blocks

palette, as demonstrated in Figure 3.17.

Alternatively, you can right-click on a code block once it has been added to the

scripts area to access a link to the block’s help file, as demonstrated in Figure 3.18.

By clicking on the Help link in the popup menu that is displayed, you can display

help information for that control. For example, Figure 3.19 shows the help

information that is available for the forever code block.

As Figure 3.19 shows, the help information that is displayed explains the purpose

of the code block and demonstrates its usage.

70 Chapter 3 n A Review of the Basic Components of Scratch Projects

Table 3.8 Scratch Variables Blocks

Block Monitor Description

No Modifies the value assigned to a numeric value stored in a
variable by the specified amount.

No Assigns a value to a numeric variable.

Yes Retrieves the value assigned to a variable.

Figure 3.18
Accessing help for a Scratch code block that has been added to the scripts area.

Figure 3.17
Accessing help for a given Scratch code block.

Summary
This chapter provided a quick reference that outlined the purpose and usage of

all of the code blocks provided by Scratch. You may want to bookmark this

chapter to help make it easy to return to and take advantage of this information.

This chapter explained the three types of code blocks supported by Scratch and

outlined their relationship to one another. The chapter then provided an

explanation of all 100 plus Scratch code blocks, going over them category by

category. On top of all this, you learned how to work with and configure

monitors and to access help information for individual code blocks.

Summary 71

Figure 3.19
Displaying the help window for the forever code block.

This page intentionally left blank

Mr. Wiggly’s Dance—A
Quick Scratch Project

So far, you have been presented with an overview of Scratch and its capabilities

and learned how to work with its IDE. You have also been given an overview of all

of the code blocks that make up the Scratch programming language and learned

the basic steps involved in creating Scratch applications. Now that you are more

familiar with Scratch and its key components, let’s put this new knowledge to use

by creating a new Scratch application project, examining in greater detail the

steps involved in creating and executing Scratch applications.

The topics covered in this chapter include:

n A review of the programming concepts that Scratch can teach you

n A detailed overview of how to build Scratch applications

n Learning how to distribute your Scratch programs on CD-ROM

Programming with Scratch
As a beginner’s programming language, Scratch teaches you a number of

critical programming concepts that you will be able to later rely on should you

decide to make the jump to other more traditional and industrial-strength

programming languages like Microsoft Visual Basic, Cþþ, JavaScript, and

73

chapter 4

AppleScript. The programming concepts that you can learn from Scratch

include:

n Sequential Processing. This involves the processing of application code

blocks, in the order that they are laid out, starting at the beginning of a script

file and continuing to the end of the script.

n Conditional Programming Logic. This involves the conditional execution

of code blocks based on data collected during application execution.

n Use of Variables. This involves the storage, retrieval, and modification of

data during application execution.

n Iterative Processing. This involves the repeated execution of code blocks to

process large amounts of information or to control the repeated execution

of code blocks required to direct the execution of a game or application.

n Boolean Logic. This involves the application of programming logic that

executes based on the analysis of true/false data provided by Scratch during

program execution.

n Interface Design. This involves the development of user-friendly and

intuitive application stage layout, making it easy for users to interact with

applications.

n Program Synchronization. This involves the passage and receipt of

messages between application scripts for the purpose of coordinating the

execution of different parts of an application.

n Event Handling. This involves the initiation of script execution based on the

occurrence of predefined events, such as the pressing of keyboard keys, the

pressing of the green flag key, or the receipt of a synchronization message.

n Application and Game Development. This involves the creation of

different types of computer application projects.

n Sprite Programming. This involves the use of sprites as the basis for

developing graphical programs.

n Application Troubleshooting. This involves the identification, location,

and elimination of programming errors, or bugs, that prevent applications

from executing as they are supposed to.

74 Chapter 4 n Mr. Wiggly’s Dance—A Quick Scratch Project

You will learn more about each of these programming concepts as you make

your way through the remainder of this book.

No t e

As powerful and fun as Scratch is, there are some programming concepts that it does not teach.
These concepts include the storage of collections of data in arrays, the ability to process file input
and output, the ability to organize application code into procedures, and the ability to support
advanced object-oriented programming techniques. However, as a first-time programmer, these
concepts can be challenging to learn, and by omitting them, the developers of Scratch have
produced a streamlined yet powerful learning environment, which will prepare you to later make the
jump to programming languages that support these advanced programming concepts.

Creating the Mr. Wiggly’s Dance Application
The rest of this chapter is dedicated to leading you through the development of

the Mr. Wiggly’s Dance application. In this Scratch application, a short, round,

and comical cartoonish character named Mr. Wiggly dances around the stage to

music, as demonstrated in Figure 4.1.

Because Mr. Wiggly is bashful, his skin changes color as he dances, as demon-

strated in Figure 4.2. Although not immediately obvious when viewed in black

and white, if you compare the color of Mr. Wiggly in Figures 4.1 and 4.2, you will

notice that he has definitely begun to blush, betraying his discomfort at dancing

in front of an audience.

Creating the Mr. Wiggly’s Dance Application 75

Figure 4.1
Mr. Wiggly practices his dance moves, dancing back and forth across the stage.

At the end of each dance, Mr.Wiggly pauses for a moment to reflect on how things

are going before deciding to keep on dancing, as demonstrated in Figure 4.3.

The Mr. Wiggly’s Dance application project will be created by following a series

of steps, as outlined here:

1. Creating a new Scratch application project.

2. Adding a project background.

76 Chapter 4 n Mr. Wiggly’s Dance—A Quick Scratch Project

Figure 4.2
The bashful Mr. Wiggly’s skin color changes as he dances.

Figure 4.3
Mr. Wiggly pauses at the end of each dance only to decide to keep dancing.

3. Adding and removing sprites to and from the project.

4. Importing a music file into the application.

5. Scripting audio playback.

6. Adding the programming logic required to make Mr. Wiggly dance.

7. Saving and executing your work.

Since this book has yet to provide a detailed explanation of how to work with all

of the Scratch code blocks used in this application project, brief explanations will

be provided. You will learn the ins and out of programming with code blocks in

Chapters 5 through 12. As you make your way through each of the steps in this

project, try and keep your focus on the overall process being followed and do not

get caught up in the specifics. Later, once you have finished reviewing Chapters 5

through 12, you can always return and review this project again and clear up any

questions you may have.

Step 1: Creating a New Scratch Project

The first step in creating a Scratch project is to start Scratch. Doing so results in

the automatic creation of a new Scratch project. New Scratch projects come

equipped with a single sprite with two costumes representing a cat. You can

choose to incorporate this sprite into your application or to remove it. If, on the

other hand, Scratch has already been started and you have been working with it

for a while, you can create and open a new Scratch application project by clicking

on the New button located on the Scratch menu bar. In response, a new project is

opened in the IDE, as shown in Figure 4.4.

Step 2: Adding a Background to the Stage

With your new Scratch application project now created, it is time to get to work.

Let’s begin by adding a suitable background to the stage that will help set the

mood of the application. Backgrounds are associated with the stage, so to add a

background to your application, you must click on the blank stage thumbnail

located in the sprite list. Once selected, the stage thumbnail is highlighted with a

blue outline, as shown in Figure 4.5.

Once you have selected the stage thumbnail, you can modify its background by

clicking on the Backgrounds tab located at the top of the scripts area.When you do

so, the currently assigned stage background is displayed, as shown in Figure 4.6.

Creating the Mr. Wiggly’s Dance Application 77

To replace the currently assigned blank background with something more

interesting, click on the Import button. This will open the Import Background

window. Once opened, click on the Indoors folder, select the chalkboard

thumbnail, as shown in Figure 4.7, and click on the OK button.

78 Chapter 4 n Mr. Wiggly’s Dance—A Quick Scratch Project

Figure 4.4
New Scratch application projects come supplied with a single sprite.

Figure 4.5
Selected thumbnails in the sprite list are highlighted with a blue outline.

Once imported, the new background will be added to the application’s current

list of background files, as shown in Figure 4.8. As you can see, the thumbnail is

automatically assigned a name and a number.

Since this application only requires one background, you can remove the default

blank background named background1 from your project by clicking on the

Delete This Costume button, which is located to the right of the background’s

picture and represented by a round X button.

Creating the Mr. Wiggly’s Dance Application 79

Figure 4.6
The Backgrounds tab provides the ability to create, import, edit, and rename backgrounds.

Figure 4.7
Importing a new background into your Scratch application project.

T i p

Removing backgrounds, costumes, and sound files no longer needed by your Scratch applications
will reduce their size. This can be of critical importance should you decide to upload them to the
Scratch website. There is a 10MB project size limit at that site. Graphic and audio files tend to be
relatively large, so removing any that you do not need can have a significant impact on the size of
your applications.

Step 3: Adding and Removing Sprites

The next step in the development of this Scratch project is to add a sprite

representing Mr. Wiggly to the project and to remove the cat sprite, which is not

needed in this application. To add the sprite representing Mr. Wiggly, click on

the Choose New Sprite from File button, as shown in Figure 4.9. This button is

the middle button that makes up the collection of new sprite buttons, located just

beneath the stage and just above the sprite list.

Scratch provides ready access to all kinds of sprites, organized into the following

six folders:

80 Chapter 4 n Mr. Wiggly’s Dance—A Quick Scratch Project

Figure 4.8
Scratch applications can have any number of backgrounds and can switch between them during
execution.

Choose New Sprite
from File button

Figure 4.9
Click on the Choose New Sprite from File button to access a collection of ready-made sprites.

n Animals

n Fantasy

n Letters

n People

n Things

n Transportation

The sprite that you want to use to represent Mr. Wiggly is located in the People

folder. Once clicked, the Choose New Sprite from File button instructs Scratch to

display the New Sprite window, which provides access to the six folders listed

above. Open the People folder and then scroll down until you locate the

roundman sprite, as shown in Figure 4.10.

Select the roundman sprite by clicking on it and then click on the OK button. The

New Sprite window will close and the new sprite will be added to the middle of

the stage, as shown in Figure 4.11.

Creating the Mr. Wiggly’s Dance Application 81

Figure 4.10
Selecting the sprite that will be used to represent Mr Wiggly.

When contrasted against the stage’s background, Mr. Wiggly’s default placement

in the middle of the stage makes it look like he is floating on air. To put things

into proper perspective, drag and drop Mr. Wiggly about one inch lower down

the stage, so that it looks like he is standing on the floor.

Since the Mr. Wiggly’s Dance application does not need the default cat sprite, go

ahead and remove this sprite from the application project by selecting the Delete

button on the Scratch toolbar and then clicking on the thumbnail for the cat

located in the sprite list.

T i p

You can also remove the cat sprite from the application by right-clicking on its thumbnail and then
selecting Delete from the popup menu that is displayed.

Step 4: Adding Mr. Wiggly’s Music

Now that you have taken care of the sprites needed by the application, it is time to

import the sound file. To do this, click on the thumbnail representing the stage in

the sprite list and then click on the Sounds tab in the scripts area. In response,

Scratch will display all of the sound files belonging to the sprite. By default, every

82 Chapter 4 n Mr. Wiggly’s Dance—A Quick Scratch Project

Figure 4.11
A thumbnail representing the sprite is also added to the sprite list.

sprite in a Scratch application is assigned a common sound file named pop, as

shown in Figure 4.12.

Scratch provides ready access to all kinds of prerecorded audio files. The name of

the sound file that Mr. Wiggly will dance to is Eggs. To add this file to the sprite,

click on the Import button. In response, Scratch will display the Import Sound

window, which by default contains eight folders, listed next, in which Scratch

stores its audio files.

n Animal

n Effects

n Electronic

n Human

n Instruments

n Music Loops

n Percussion

n Vocals

Drill down into the Music Loops folder by double-clicking on it. Locate and click

on the Eggs file, as shown in Figure 4.13. Scratch will immediately play the file, so

you can hear what it sounds like.

Click on the OK button to import the sound file into your application project, as

demonstrated in Figure 4.14. Note that for each sound file, a number of pieces of

information are displayed. You can see the name of the file, the length of time

that it takes to play the file, and the file’s size. Note that the Eggs sound file takes

Creating the Mr. Wiggly’s Dance Application 83

Figure 4.12
All sprites supplied by Scratch come equipped with the same sound file.

16 second to play. You will need to remember this information a little later when

programming the playback of this sound file.

The default pop sound file is not needed by this application; therefore, you can

delete it by clicking on the round Delete This Sound button located at the

bottom-right side of the sound file entry.

84 Chapter 4 n Mr. Wiggly’s Dance—A Quick Scratch Project

Figure 4.14
You can add any number of sound files to a sprite.

Figure 4.13
Importing a sound file into a Scratch application project.

Step 5: Playing the Dance Music

It is time to begin putting together the program code logic required to make your

new application work. In total you will need to create two scripts for this project:

one for the stage and another for the sprite representing Mr. Wiggly. The script

belonging to the stage will be made up of code blocks that are responsible for

playing the application’s background music. The script belonging to the sprite

will contain the programming logic required to make Mr. Wiggly dance.

The first step in the development of the stage’s script is to click on the Control

button in the blocks palette and then to drag and drop an instance of the when

green flag clicked block onto the scripts area, as demonstrated in Figure 4.15.

This hat code block will automatically execute the script to which it is attached

whenever the green flag button is clicked.

Since the application’s background music is supposed to be played over and over

again for as long as the application runs, you need to set up a loop that will

repeatedly play the sound file. To set this up, drag and drop an instance of the

forever code block to the scripts area, attaching it to the bottom of the when

green flag clicked block, as shown in Figure 4.16.

Now that you have the loop set up, click on the Sound button located at the top

of the blocks palette and then drag and drop an instance of the play sound code

block onto the scripts area, embedding it inside the forever code block. Next,

click on the pull-down menu located on the right-hand side of the code block

and select Eggs from the list that appears. At this point the script that you are

developing should look like the example shown in Figure 4.17.

No t e

Scratch automatically populates the play sound code block with a list of all of the sound files
that you added previously to the stage, making it easy for you to access them when working with
sound code blocks.

At this point you only need to add one last code block to the script to finish it up.

To do so, click on the Control button located at the top of the blocks palette and

then drag and drop an instance of the wait secs code block over the scripts area,

inserting it inside the forever code block, immediately following the play sound

block, as shown in Figure 4.18. This block is needed to pause the loop for

16 seconds, allowing for the complete playback of the sound file, before the loop

repeats and begins playing it again.

Creating the Mr. Wiggly’s Dance Application 85

86 Chapter 4 n Mr. Wiggly’s Dance—A Quick Scratch Project

Figure 4.16
The forever block will repeat the execution of any code block that you embed within it.

Figure 4.15
This block will be used to automatically execute the script whenever the green flag button is clicked.

No t e

Now that this script has been written, you can test it out by double-clicking on it. In response,
Scratch will repeatedly play back the sound file. Once you are convinced that everything is
working correctly, click on the red Stop Everything button to halt the script’s execution so that you
can move on to the next step in the development of this application.

No t e

In addition to playing an audio file using the combination of the sound and control blocks shown
in Figure 4.18, you can instead use the code block shown here, which does the same thing as
these two code blocks.

Step 6: Making Mr. Wiggly Dance

Now that you have finished work on the stage’s script, it is time to write the script

that makes Mr. Wiggly dance. To do so, click on the thumbnail of the sprite

representing Mr. Wiggly (in the sprite area). In response, Scratch should clear

out the script’s area and automatically select the Scripts tab for you so that you

can begin script development.

Creating the Mr. Wiggly’s Dance Application 87

Figure 4.17
Using the play sound code block to play back the Eggs sound file.

Figure 4.18
Pausing loop execution to allow playback of the sound file to complete.

The first step in the development of this is to click on the Control button in the

blocks palette and then to drag and drop an instance of the when green flag

clicked block onto the scripts area, as demonstrated in Figure 4.19. This hat code

block will automatically execute the script to which it is attached whenever the

green flag button is clicked.

In this application, Mr. Wiggly is supposed to dance over and over again without

stopping (until the user stops running the application). To set this up, drag and

drop an instance of the forever code block onto the scripts area and attach it to

the bottom of the when green flag clicked block, as shown in Figure 4.20.

Next, it is time to add a pair of code statements that will move Mr. Wiggly 25

steps to the right and then pause for two seconds. This is accomplished by

dragging and dropping the move steps and wait secs blocks to the scripts area,

embedding them inside the forever code block, as shown in Figure 4.21. Note

88 Chapter 4 n Mr. Wiggly’s Dance—A Quick Scratch Project

Figure 4.20
Adding a loop to the script to repeat the execution of embedded code blocks.

Figure 4.21
Adding the programming logic that makes Mr. Wiggly dance his first step.

Figure 4.19
Setting up the script to execute when the green flag is clicked.

that by default the move steps block is set to 10. You will need to replace this with

a value of 25.

Next, you need to add a series of move steps and wait secs code blocks, which,

when executed, will move Mr. Wiggly 25 steps to the right followed by four

moves to the left at 25 steps each and then another two moves back towards the

right. This is accomplished by adding seven sets of a code block, as shown in

Figure 4.22.

To complete the development of this script, you need to add two looks blocks, as

shown in Figure 4.23. The change effect by code block is used to modify

Mr. Wiggly’s color each time the loop finishes its execution, simulating the

feeling of embarrassment that Mr. Wiggly experiences when he dances. Lastly,

the think for secs code block is used to display a text message in a popup bubble

that shows Mr. Wiggly thinking about and then deciding to keep dancing.

Creating the Mr. Wiggly’s Dance Application 89

Figure 4.22
Adding the remaining code blocks required to complete Mr. Wiggly’s dance routine.

Step 7: Saving and Executing Your
New Scratch Application

At this point your copy of the Mr. Wiggly’s Dance application should be com-

plete. All that remains is for you to save the application and then to execute it and

see how it looks when running. To save your application, click on the Save button

located on the IDE’s menu bar. In response, Scratch will display the Save Project

window, as demonstrated in Figure 4.24, prompting you to specify the name and

location where you want to store your new application.

In addition, Scratch provides the opportunity to enter your name as the project

author and to enter notes describing the project in the Project Author and About

This Project text fields. Once you are done, click on the OK button to save your

Scratch application project.

Once you have saved your work, run the application to see how it works. Since

both of the application’s scripts are configured to execute whenever the green flag

button is pressed, all you have to do is click on that button and sit back and watch

as the bashful Mr. Wiggly dances about the stage for your amusement.

90 Chapter 4 n Mr. Wiggly’s Dance—A Quick Scratch Project

Figure 4.23
Modifying Mr. Wiggly’s color and displaying his thoughts.

Distributing Scratch Projects
Scratch is an interpreted programming language. This means that unlike some

programming languages, such as Visual Basic and Cþþ, which compile their

applications into an executable file that can then be run on other computers

without requiring that the programming language be installed, Scratch appli-

cations can only execute when run within the Scratch IDE (or on the Scratch

website at http://scratch.mit.edu). Therefore, if you want to distribute your

Scratch applications and have them execute on someone else’s computer, you

must first see to it that Scratch is installed on the other computer, or you must

create a special application distribution CD that includes Scratch system files

required to run your application when Scratch has not been installed.

No t e

You can also share access to your Scratch application projects by posting them on the Scratch
website and pointing your friends to that website, where they can view and run them using a
Java-enabled web browser. You will learn all about the steps involved in sharing your Scratch
applications this way in Chapter 13, ‘‘Sharing Your Scratch Projects Over the Internet.’’

Distributing Scratch Projects 91

Figure 4.24
Saving your copy of the Mr. Wiggly’s Dance application project.

http://scratch.mit.edu

Distributing Scratch Applications to Windows Computers

The files that you need to burn to your distribution CD-ROM vary, depending on

whether you are working with Microsoft Windows or Mac OS X. When working

with Microsoft Windows, you will need to burn the following files identified in

Figure 4.25, as well as a copy of your Scratch application, to a CD-ROM.

Each of the files listed can be found in the folder in which you installed Scratch,

which on Microsoft Windows is C:\Program Files\Scratch by default.

n Scratch.exe

n Scratch.image

n Scratch.ini

n ScratchPlugin.dll

n Mpeg3Plugin.dll

n License.txt

No t e

The reason for including the License.txt file, which is Scratch’s license document, is to ensure that
anyone you distribute your CD-ROM to will know the terms of the license agreement. Including
this file will also keep you out of legal trouble.

92 Chapter 4 n Mr. Wiggly’s Dance—A Quick Scratch Project

Figure 4.25
Burn a copy of the files shown in this figure along with your Scratch application file to create a
distributable Windows CD-ROM.

Distributing Scratch Applications to Mac OS X Computers

If you are working with Mac OS X and want to create a distribution disc to share

your creations with other Mac users who do not have Scratch installed on their

computers, you may do so by burning a CD-ROM containing your Scratch

application projects as well as the following Scratch system files, all of which are

available in Scratch’s installation folder.

n Scratch.app

n Scratch.image

n License.txt

Instructions for Executing Your Application
from a CD-ROM

Once you have burned a CD-ROM for your Scratch application, you need to tell

your friends how to execute it, which can be done by double-clicking on

Screatch.exe (Windows) or Scratch.app (Mac OS X), which will start the Scratch

IDE, after which your application can be accessed by clicking on the IDE’s Open

button.

Alternatively, for Windows users, you might want to consider adding a batch file

for each application that you added to the CD-ROM that when executed will run

one of your Scratch applications. You can do this by opening your preferred text

editor (such as Notepad) and keying in a single statement using the following

syntax.

Scratch.exe Scratch.image ScratchProject.sb

Here, Scratch.exe is the name of the Scratch executable that starts Scratch.

Scratch.image is a required Scratch system file, and ScratchProject.sb represents

the name of a Scratch application that you have added to the CD-ROM. Note

that the .sb file extension has been included. Once you have typed in this

statement, save the text file with a filename that ends with a .bat file extension

(MrWiggly.bat, HelloWorld.bat, etc.).

When a batch file is added to the CD-ROM along with all of the files already

listed, your friends can start your Scratch application by double-clicking on it.

Once double-clicked, the batch file will open Scratch and load your Scratch

application project into it, making it ready for execution.

Distributing Scratch Projects 93

Summary
This chapter walked you through the development of your second Scratch

project. In learning how to create Mr. Wiggly’s Dance, you learned the funda-

mental steps involved in creating and executing Scratch applications. This

included learning how to change stage backgrounds and work with sprites.

Although detailed instruction on how to work with different code blocks and

sounds is not covered until later chapters, you received a quick overview of how

to work with a number of control, motion, looks, and sound blocks, and you

learned how to import audio files and sprites into your Scratch applications.

94 Chapter 4 n Mr. Wiggly’s Dance—A Quick Scratch Project

Learning How to Write
Scratch Programs

Part II

This page intentionally left blank

Moving Things Around

This chapter is the first of eight chapters designed to teach you how to work with

all of the code blocks that make up the Scratch programming language. This

chapter’s focus is on demonstrating how to work with motion code blocks. Using

these blocks, you will be able to create Scratch applications that can move sprites

around the stage, rotate sprites, point them in different directions, change sprite

location, detect collisions with the edge of the stage, and report on a sprite’s

direction and coordinates. This chapter also introduces you to Scratch cards as a

means for learning how to perform different types of tasks. You will also learn

how to create a new virtual fish tank application.

The major topics covered in this chapter include:

n Learning how to move and rotate sprites

n Learning how to change sprite direction and location

n Learning how to change sprite location and to detect collisions with the edge

of the stage

n Learning how to retrieve and report information about a sprite’s coordinates

and direction

97

chapter 5

Working with Motion Code Blocks
To move sprites around the stage when your Scratch applications execute, you

need to learn how to work with motion code blocks. As previously stated, motion

blocks control sprite placement, direction, rotation, and movement. In total,

Scratch provides access to 16 different motion blocks, which you can work with

by clicking on theMotion button located at the top of the blocks palette and then

dragging and dropping motion blocks onto the scripts area, where you can

configure them and use them in creating scripts.

If you look closely at the various motion code blocks, you will notice that Scratch

organizes them into six subgroupings, each of which is separated by a blank space

in the blocks palette. These sub groupings include:

n Motion blocks that move and rotate sprites

n Motion blocks that point sprites in different directions or towards different

objects

n Motion blocks that change a sprite’s location and control whether a sprite

jumps to its new location or glides to it

n Motion blocks that change a sprite location by setting or modifying the

value of its X-axis and Y-axis coordinates

n Amotion block that controls a sprite’s movement when it touches the edges

of the stage

n Motion blocks that report on a sprite’s position and direction

Examples of how to work with the motion code blocks in each of these subgroups

are provided throughout the rest of this chapter.

Moving and Rotating Sprites
Scratch provides access to three motion blocks that move sprites and rotate them

on their axis. These code blocks are shown in Figure 5.1.

The first of these blocks allows you to specify the number of steps that a sprite

should be moved on the stage (in whatever direction the sprite is currently

pointing). By default, the code block specifies a value of 10. However, you may

98 Chapter 5 n Moving Things Around

change this value to suit your needs. You can even enter a negative value to move

the sprite in the opposite direction that it is pointing.

In addition, you can drag and drop any reporter block you want into this code

block’s entry field when specifying a value. The next two code blocks provide the

ability to rotate a sprite on its axis, clockwise and counterclockwise, as indicated

by the direction of the arrow displayed on the blocks.

The following sample script demonstrates how to use the first two blocks to move

a sprite around the stage in a clockwise manner.

This script executes whenever the green flag button is clicked. Once this event has

occurred, four pairs of motion code blocks are executed at one-second intervals.

This application uses the default cat sprite that is supplied as part of every new

Scratch project. To create and test your own copy of the application, create a new

Scratch application, click on the thumbnail of the cat sprite, drag it to the upper-

left corner of the stage, and shrink it to about 50% of its normal size and then

assemble the script.

Moving and Rotating Sprites 99

Figure 5.1
These control blocks are designed to give you control over the relative movement and rotation of
sprites.

The first two motion blocks in the script move the sprite 400 steps. Since the cat,

by default, is pointed 90 degrees to the left, this will move the sprite from the

upper-left corner of the stage to the upper-right corner of the stage. The next pair

of motion blocks moves the sprite down to the bottom-right corner of the stage.

The third pair of motion blocks moves the sprite to the bottom-left corner of the

stage, and the last pair of motion blocks moves it back to the upper-left corner of

the stage.

No t e

All of the sprites supplied by Scratch have a predefined rotation axis. You can change the rotation
axis for these sprites and set the rotation point for new sprites that you create or import into
Scratch by editing the sprite using Scratch’s Paint Editor program and then specifying a new
rotation axis using the program’s Set Rotation Point control.

A sprite’s rotation is also affected by the selection of one of the three rotation buttons located on
the left-hand side of the Sprite’s info area. If you look at the cat sprite’s rotation setting, you will
see that the cat sprite is configured by default to rotate freely.

Figure 5.2 demonstrates the movements of the cat sprite as it moves from corner

to corner, clockwise around the screen.

100 Chapter 5 n Moving Things Around

Figure 5.2
The cat’s direction is changed by 90 degrees immediately after each move, readying it for its next move.

Setting Sprite Direction 101

If you want, you can modify the script to move the sprite around the stage in a

counterclockwise direction by modifying it, as demonstrated here:

Setting Sprite Direction
Scratch provides access to two motion blocks that can be used to point a sprite in

a specified direction or to point a sprite towards the mouse-pointer or a specified

sprite. These code blocks are shown in Figure 5.3.

The first of these blocks allows you to point a sprite in a particular direction as

specified by the assignment of a numeric value representing the number of

degrees that the sprite should be turned. You can either select a value of 0 = up,

90 = right, �90 = left, or 180 = down from the block’s drop-down list or type in an

integer value in the range of 0 to 360. For example, the following script demon-

strates how to rotate a sprite 360 degrees, 90 degrees at a time at one-second

intervals.

This example uses the default cat sprite. Figure 5.4 shows an example of the four

directions that the sprite turns when the script is executed. Note that for this

example to work, you must click on the Can Rotate button in the sprite info area

(allowing the sprite to rotate over a range of 360 degrees).

The secondmotion block shown in Figure 5.5 lets you point a sprite towards either

the mouse-pointer or another sprite, as demonstrated in the following script.

102 Chapter 5 n Moving Things Around

Figure 5.3
These code blocks can be used to point a sprite towards a specified direction or object.

Figure 5.4
An example of the four possible directions that the point in direction code block can point a sprite.

Figure 5.5
The cat rotates as necessary to continue facing the mouse-pointer.

In this example, the sprite is continuously repositioned so that is points towards

the mouse-pointer. Therefore, whenever the mouse-pointer is moved around the

stage, the image of the cat follows, as demonstrated in Figure 5.5.

No t e

In order for the sprite shown in Figure 5.5 to continuously reposition itself, the motion block must
be embedded within a control block that sets up a loop, repeatedly executing the motion block,
allowing it to react every time the mouse-pointer is moved.

Repositioning a Sprite
Scratch provides access to three motion blocks that move a sprite to a specified

coordination location on the stage, move a sprite to the location currently

occupied by the mouse-pointer or another sprite, or move a sprite to a specified

coordination position over a specified number of seconds. These code blocks are

shown in Figure 5.6.

The first of these three motion blocks allows you to reposition a sprite to any

location on the stage by specifying X-axis and Y-axis coordinates for the sprite.

For example, the following script demonstrates how to reposition a sprite in the

middle of the stage, pointing it in a 90-degree direction.

Repositioning a Sprite 103

Figure 5.6
These code blocks can be used to move a sprite to a specific location.

The following script demonstrates how to move a sprite to the location on the

stage currently occupied by the mouse-pointer.

Figure 5.7 shows an example of the output that is generated when this script is

run. If you look closely, you will see that in each of the three examples, the cat

sprite remains positioned directly under the mouse-pointer no matter where it is

moved on the stage.

This next script demonstrates how to reposition a sprite to a specific location on

the stage. Instead of simply making the sprite appear at a specified location, as

demonstrated in the previous two examples, this script repositions the sprite by

moving or gliding to its new position in a smooth motion.

104 Chapter 5 n Moving Things Around

Figure 5.7
As this figure demonstrates, the sprite automatically moves around the stage, following the mouse-
pointer.

Changing Sprite Coordinates
Scratch provides four motion blocks that modify the location of a sprite on the

stage either by assigning it new coordinates or by changing the sprite’s coordi-

nates by incrementing or decrementing their values. These code blocks are shown

in Figure 5.8.

The following script demonstrates how to move a sprite across the stage in a series

of eight steps. When first started, the script moves the sprite to the left-hand

side of the stage, and then, using a loop, the sprite is moved by incrementing the

value assigned to the X-axis coordinate by 50 and its Y-axis coordinate by�10 each

time the loop repeats itself. As a result, the sprite is repeatedly repositioned and

thus moved across the stage (in a descending angle over a period of eight seconds).

Bouncing Sprites Around the Stage

As a sprite is moved around the stage, it may eventually come into contact with

one of the edges of the stage. Using the motion block shown next, you can

instruct Scratch to bounce the sprite off of the edge of the stage.

Changing Sprite Coordinates 105

Figure 5.8
These code blocks provide the ability to modify a sprite’s location by changing its coordinates.

The following script demonstrates how to use this code block to bounce a sprite

around the stage:

This script reverses the direction that a sprite is traveling whenever it collides

with the edge of the stage. If you were to add this script to the cat sprite in a new

application, the cat would move across the stage from side to side until you

halted the application’s execution.

Keeping Track of Sprite Coordinates and Direction
Scratch provides three motion (reporter) blocks that can be used to retrieve and

display information regarding the value of the sprite’s X- and Y-coordinates as

well as the sprite’s direction. These code blocks are shown in Figure 5.9.

No t e

Scratch’s stage coordinate system allows for a coordinate range of �240 to 240 on its X-axis and
a coordinate range of 180 to �180 on its Y-axis.

To set up an example that demonstrates how to work with these reporter blocks,

create a new Scratch application and add the following script to the default cat

sprite.

When executed, this script will move the cat sprite around the stage to wherever

the mouse-pointer is located, bouncing it off the edge of the stage when neces-

sary. After adding the script, select each of the reporter blocks by clicking on

106 Chapter 5 n Moving Things Around

the check box just to the left of each block in the blocks palette. Once you have

done this, three monitors should be visible on the stage, as demonstrated in

Figure 5.10.

Once you have set up the application’s monitors, run the application, move the

mouse-pointer around the stage, and keep an eye on the values reported by the

monitors.

Taking Advantage of Scratch Cards
One resource available to Scratch programmers is Scratch cards. Scratch cards are

PDF files that you can print, cut out, glue together, and then use as a quick

reference for performing certain tasks. You can download Scratch cards for free

at http://scratch.wik.is/Support/Scratch_Cards, as shown in Figure 5.11.

The front of each Scratch card identifies the type of task that the card is designed

to show you how to perform, and the back of the card provides detailed

Taking Advantage of Scratch Cards 107

Figure 5.10
Displaying a sprite’s coordinates and direction.

Figure 5.9
These code blocks provide the ability to retrieve and display a sprite’s coordinates and direction.

http://scratch.wik.is/Support/Scratch_Cards

instruction on how to perform the task. As of the writing of this book, a dozen

Scratch cards were available. The PDF file for each of these Scratch cards is

descriptively named to identify the task that the card teaches you to perform. The

list of available Scratch cards includes:

n Change Color

n Move to a Beat

n Key Moves

n Say Something

n Glide

n Follow the Mouse

n Dance Twist

108 Chapter 5 n Moving Things Around

Figure 5.11
Scratch cards serve as quick reference for performing specific types of tasks.

n Interactive Whirl

n Animate It

n Moving Animation

n Surprise Button

n Keep Score

Figure 5.12 shows what the PDF file for the Key Moves Scratch card looks like. As

you can see, the left-hand side of the Scratch card demonstrates the movement of

Taking Advantage of Scratch Cards 109

Figure 5.12
The Key Moves Scratch card demonstrates how to move a sprite around the stage using the keyboard
arrow keys.

the sprite, and the right-hand side of the card provides an example of the code

blocks needed to move the sprite in each of the four demonstrated directions. In

addition, each Scratch card includes an extra tip that helps you further enhance

the task being performed.

T i p

There are five Scratch cards that provide information specific to moving sprites around the stage.
These Scratch cards are briefly described here:

n Key Moves. Demonstrates how to move a sprite around the stage using keyboard keys.

n Move to a Beat. Demonstrates how to create an animated dance sequence that moves to
a drum beat.

n Moving Animation. Demonstrates how to animate the movements of a sprite using an
alternative series of costumes.

n Glide. Demonstrates how to move a sprite around the stage from one point to another in a
smooth motion.

n Follow the Mouse. Demonstrates how to script the movement of a sprite so that it follows
the movement of the mouse-pointer on the stage.

Creating the Virtual Scratch Fish Tank
The rest of this chapter is dedicated to leading you through the development of a

virtual fish tank application. In this Scratch application, five sprites, representing

a range of colorful fish and a small octopus, busily swim around the fish tank,

represented by a suitable background, as demonstrated in Figure 5.13.

This application will be created by following a series of steps, as outlined here:

1. Creating a new Scratch application project.

2. Adding a stage background.

3. Adding and removing sprites to and from the project.

4. Importing a sound file into the application.

5. Adding the programming logic required to play a background sound effect.

6. Adding the programming logic required to animate fish tank activity.

7. Saving and executing your work.

110 Chapter 5 n Moving Things Around

Step 1: Creating a New Scratch Project

The first step in creating this Scratch project is to start Scratch, thereby auto-

matically creating a new Scratch application project. Alternatively, if you already

have Scratch up and running, you can create a new project by clicking on the New

button located on the Scratch menu bar.

Step 2: Adding a Background to the Stage

Once you have a new application project ready to go, let’s begin by adding a

suitable background to the stage that will give the virtual fish tank an appropriate

look and feel. To set this up, click on the blank thumbnail representing the stage in

the sprite list and then click on the Backgrounds tab located at the top of the

scripts area. Next, click on the Import button, displaying the Import Background

window. Double-click on theNature folder, scroll down and select the underwater

graphic, and then click on the OK button. Once the new background has been

added, go ahead and remove the blank stage background from the application.

Step 3: Adding and Removing Sprites

The next step in the development of the virtual fish tank application is to add

sprites to the application representing different marine life. Before doing this,

remove the cat sprite from the application, since it is not needed. To do so,

Creating the Virtual Scratch Fish Tank 111

Figure 5.13
An example of the virtual fish tank application in action.

right-click on its thumbnail in the sprites list and select Delete from the popup

menu that appears. Once you have removed the cat sprite, it is time to add new

sprites needed by the application.

In total, you need to add five new sprites. Four of the sprites will represent

different fish, and the fifth sprite will represent a small octopus. To add the

octopus sprite, click on the Choose Sprite from File button located in the middle

of the new sprite button controls. This will open the New Sprite window.

Double-click on the Animals folder, scroll down and select the fish1-a sprite, and

then click on the OK button. Next, click on the sprite’s thumbnail in the sprites

area and then change the name assigned to the sprite to Blue.

Using the same set of steps described above, add the following list of sprites to the

application project, renaming each sprite as indicated in Table 5.1.

Once you have added all five sprites, move the sprites to random locations on the

stage. Next, change the direction in which each sprite moves by selecting each

sprite and then changing it in the sprite info area by repositioning the direction of

the blue line displayed on the image of the sprite.

T i p

To make the virtual fish tank more interesting, set the fish and the octopus up so that each moves
in a different direction and angle.

Step 4: Adding a Suitable Audio File to the Stage

Now that the application’s background and sprites have been added, it is time to

add an audio file that when played will give the virtual fish tank a realistic feeling.

Specifically, we’ll add an audio file that when played makes bubble sounds. To

accomplish this task, click on the thumbnail representing the stage in the sprite

list and then click on the Sounds tab in the scripts area. Next, click on the Import

112 Chapter 5 n Moving Things Around

Table 5.1 Sprite Rotational Buttons

Sprite Filename Sprite Application Name

fish2 Purple

fish3 Yellow

fish4 Spotted

octopus1-a Squid

button to display the Import Sound window. Next, double-click on the Effects

folder and then select the Bubble audio file and click on OK.

T i p

To help keep your Scratch application as small as possible, remove the default pop audio file from
the background.

Step 5: Playing the Audio File

Now it is time to add the programming logic needed to make your new appli-

cation run. In total you will need to add six scripts to the project, one for the stage

and one for each of the application’s five sprites.

The script to be added to the stage will be responsible for playing the background

sound effect that makes the virtual fish tank sound like a real fish tank. To create

it, click on the stage thumbnail located in the sprites area and then select the

Scripts tab located at the top of the scripts area. Next, add and configure the

following code blocks exactly as shown here:

This script consists of a hat block that will execute whenever the green flag button

is pressed. When this occurs, a loop is set up that repeatedly executes two blocks.

The first code block is a sound block that plays the audio file you previously

added to the stage. The second code block pauses script execution for four

seconds to give Scratch time to finish playing the audio file, before allowing the

loop to repeat and play it again.

Step 6: Animating the Swimming of the Fish

With the programming logic required to provide the application’s background

sound effect now in place, it is time to write the scripts that will animate the

movement of the fish and octopus. To set this up, you need to add a small script

Creating the Virtual Scratch Fish Tank 113

to each of the sprites that provides the programming logic required to control the

movement of the sprites as they move (or swim) around the fish tank.

Scripting the Movement of the Blue Fish

Let’s begin by automating the movement of the sprite name Blue. Do so by

clicking on the sprite’s thumbnail and then creating the following script for it:

As you can see, this script is set up to begin executing the moment the user

clicks on the green flag button. It contains a control block that sets up a loop

that repeats the execution of two embedded motion blocks. The first motion

block moves the sprite in its current direction every time the loop repeats. The

second motion block tells Scratch to bounce the sprite off of the edge of the

stage when reached. As a result, the sprite (blue fish) will appear to swim

around the fish tank from side to side, and depending on whether you have

adjusted its direction as instructed at the end of Step 3, it will move up and

down as well.

Scripting the Movement of the Purple Fish

Next, let’s create a script that controls the movement of the purple fish. Rather

than build this script from scratch, let’s take a shortcut. With the script for the

blue fish currently displayed on the scripts area, drag and drop the script onto the

thumbnail representing the purple sprite in the sprites list. This adds an exact

copy of the script to the purple sprite, which you can then view and modify by

clicking on the purple sprite’s thumbnail.

To make things interesting, modify the number of steps that the purple sprite is

moved from 1 to 2, as shown here:

114 Chapter 5 n Moving Things Around

Other than moving the purple fish at a little faster pace than the blue fish, the

programming logic that controls both fish is identical. In fact, the programming

for all of the remaining fish and the octopus is identical, except for variances in

the number of steps the sprites are moved.

Scripting the Movement of the Yellow Fish

Using drag and drop, add a copy of the purple sprite’s script to the yellow sprite

and then modify it as shown here:

As you can see, the yellow sprite has been configured to move at the same pace as

the blue sprite.

Scripting the Movement of the Spotted Fish

Once again, using drag and drop, add a copy of the yellow sprite’s script to the

spotted sprite and then modify it as shown here:

This time the sprite has been configured so that it moves two steps at a time.

Scripting the Movement of the Octopus

Last but not least, drag and drop the script for the spotted sprite onto the sprite

representing the octopus and then modify it as shown here:

Creating the Virtual Scratch Fish Tank 115

As you can see, this sprite has been configured to move slower than any of the

other sprites, at just a half step at a time.

Step 7: Saving and Executing Your New Scratch
Application

At this point your copy of the virtual fish tank application should be complete

and should look like the example shown in Figure 5.14.

If you have not done so yet, save your new application and then run it to see how

it looks. To save your application, click on the Save button located on the Scratch

menu bar. This will display the Save Project window, allowing you to specify the

name of the application, the location where you want to store it, your name, and

comments documenting the application and its purpose.

116 Chapter 5 n Moving Things Around

Figure 5.14
The completed application consists of a background, five sprites, and six scripts.

Once you have saved your application, go ahead and run it. Since all of the scripts

in the application are configured to execute when the green flag button is pressed,

all you have to do is to click on the green flag button and then sit back and relax as

you watch and listen to your virtual fish tank.

Summary
This chapter taught you how to work with all 16 motion code blocks. You learned

how to move and rotate sprites, point sprites in different directions or towards

different objects, and change a sprite’s location. You also learned how to control

whether a sprite jumps to its new location or glides to it, how to change a sprite’s

location by setting or modifying the value of its X-axis and Y-axis coordinates,

how to control a sprite’s movement when it makes contact with the edge of the

stage, and how to report on a sprite’s position and direction. You also learned

how to work with Scratch cards and create a virtual fish tank application.

Summary 117

This page intentionally left blank

Sensing Sprite Position
and Controlling
Environmental Settings

To create many interactive computer applications, you need the ability to detect

when certain things are happening. For example, in a car racing game, it would be

important to be able to detect when two cars (sprites) bump into one another,

and in a game that uses predefined keystrokes as input for controlling certain

game functions, you need to be able to detect when those keys have been pressed.

Scratch provides the ability to detect or sense when things happen using sensing

code blocks. This chapter will demonstrate how to work with various sensing

blocks and will also guide you through the creation of a new Scratch application,

the Family Scrapbook.

The major topics covered in this chapter include learning how to

n Detect mouse-pointer location and mouse button status

n Detect when keyboard keys are pressed

n Determine when a sprite collides with other objects on the stage

n Keep track of a sprite’s distance from other objects and retrieve different

sprite properties

n Work with a timer and detect the loudness of microphone input

119

chapter 6

Working with Sensing Code Blocks
An important capability needed by a graphical programming language that

works with sprites is the ability to determine when certain things happen. For

example, sprite-based applications typically need to know when sprites collide

with one another or when the user presses certain keystrokes. This type of

functionality is provided in Scratch by sensing blocks.

Sensing blocks also provide the ability to determine the location of the mouse-

pointer and the ability to determine a sprite’s distance from other sprites. Sensing

blocks are colored sky blue. In total, Scratch provides access to 15 different

sensing blocks, which you can work with by clicking on the Sensing button

located at the top of the blocks palette.

Scratch organizes sensing blocks into eight sub-groupings, each of which is

separated by a blank space in the blocks palette. These sub-groupings include:

n Sensing blocks that retrieve and report on the left mouse button status and

mouse-pointer coordinates.

n A sensing block that determines when specified keyboard keys have been

pressed.

n Sensing blocks that determine if a sprite has made contact with the mouse-

pointer, another sprite, or the edge of the stage.

n A sensing block that reports on a sprite’s distance from the mouse-pointer

or another sprite.

n Sensing blocks that provide access to a built-in timer that can be used to

control the timing of application activity.

n A sensing block that retrieves a property value (X position, Y position,

direction, costume number, size, or volume) for the stage or a specified

sprite.

n Sensing blocks that report on how loud audio input coming from the

computer’s microphone is.

n Sensing blocks that work with a Scratch Board, allowing you to create

applications that can detect changes in light and sound and work with the

Scratch Board’s buttons and slider control.

120 Chapter 6 n Sensing Sprite Position

Except for the reset timer code block, all sensing code blocks are reporter blocks,

designed to be embedded inside stack blocks. Examples of how to work with each of

the sensing code blocks listed above are provided throughout the rest of this chapter.

Retrieving Mouse Button and Coordinate Status
In many types of applications, the mouse-pointer is used to control the move-

ment of sprites and to affect the operation of the application in many other

different ways. The sensing blocks shown in Figure 6.1 provide access to data

about the operation of the mouse-pointer.

The first of these three code blocks retrieves the location of the mouse-pointer as

it moves along the X-axis. As was stated in Chapter 2, ‘‘Getting Comfortable with

the Scratch Development Environment,’’ Scratch supports a total range of –240

to 240. The second of these code blocks retrieves the location of the mouse-

pointer as it moves along the Y-axis. Scratch supports a total range of 180 to –180

on its Y-axis. The third code block is used to retrieve a true/false value that

identifies when the mouse’s button is being pressed. The following script, which

is part of a drawing application, demonstrates how to work with all three of these

sensing code blocks.

Retrieving Mouse Button and Coordinate Status 121

Figure 6.1
These sensing blocks report on the mouse-pointer’s coordinates and button status.

To create the drawing application, create a new Scratch application project.

Remove the cat sprite from it and then create and add a new sprite that consists of

a single black dot. Next, select the thumbnail representing the dot and then add

the script shown above to it.

This application’s operation depends on the use of a virtual pen object that

Scratch makes available to you via pen code blocks, which you will learn about in

Chapter 12, ‘‘Drawing Lines and Shapes.’’ The overall operation of the appli-

cation is controlled by the script, which automatically begins executing when the

green flag button is clicked. Once started, two pen blocks are used to set the width

of the pen and the color used by the pen when drawing. Next, a forever code

block has been added to repeat the execution of all the code blocks embedded

within it.

Within the loop, an if . . . else code block is used to conditionally control the

execution of three additional statements. The if . . . else code block’s execution is

controlled by examining the value returned by a sensing block that returns a

value of true when the user presses the mouse’s left button and false if the

mouse’s left button is not being pressed.

When the user presses the left mouse button, the two statements located at

the top of the if . . . else code block are executed. The first statement moves

the sprite to the same location as the pointer, and the second code block

places Scratch’s virtual pen in a down position, allowing drawing to begin. As

a result, a blue line is drawn anywhere on the stage where the mouse-pointer

is moved when the left mouse button is being pressed. The code block located

at the bottom of the if . . . else code block is executed whenever the user

releases the left mouse button, lifting the virtual pen and halting any drawing

operations.

Figure 6.2 demonstrates the operation of the drawing application.

122 Chapter 6 n Sensing Sprite Position

Figure 6.2
An example of the drawing application in action.

Determining when Keys Are Pressed
One problem with the drawing application is that there is no way to clear the

screen and start over should youmake amistake when drawing. This can be easily

rectified using the sensing code block shown in Figure 6.3, which retrieves a true

or false, depending on whether a specified key is pressed.

To see an example of how to work with this code block, let’s modify the previous

drawing application by editing the script belonging to the application’s sprite, as

shown here.

As you can see, three new code blocks have been added that clear the stage

whenever the spacebar is pressed. Figure 6.4 shows an example of the drawing

application in operation. Here, the application is used to draw the name Lee on

the stage. Next, the spacebar is pressed, clearing the stage, after which an image of

a tree has been drawn.

Determining when Keys Are Pressed 123

Figure 6.4
This enhanced version of the drawing application can be used to draw and erase.

Figure 6.3
This sensing block can be used to detect when the user presses a specified keyboard key.

T i p

In addition to detecting keystrokes using a sensing code block, you can also use the control code block
shown in Figure 6.5. The difference between these two code blocks is that the sensing code block can
be used within a loop to continuously determine that a specified keyboard key is being pressed. The
control block, on the other hand, only executes once when the specified key is initially pressed and is
therefore good for initiating an individual action and not for facilitating the repeated execution of an
action. You will learn more about this code block later in Chapter 9, ‘‘Conditional and Repetitive Logic.’’

Determining when Sprites Collide with Other Objects
One key programming requirement of many computer games is the ability to

determine when a sprite collides with another sprite, the edge of the screen, or the

mouse-pointer. Scratch provides the ability to perform collision detection using

the three sensing code blocks shown in Figure 6.6.

The first code block shown in Figure 6.6 can be used to determine when a sprite

makes contact with a specified sprite, the edge of the stage, or the mouse-pointer.

The list of objects that this code block can detect is accessible in the block’s drop-

down list. As an example of how to work with this code block, modify the

previous Scratch application by replacing its script with the one shown here.

This script demonstrates how to determine when a sprite comes into contact with

the edge of the stage. This script executes whenever the green flag button is

clicked and uses a forever block to set up a loop that repeatedly executes all

embedded code blocks. Within the loop, you’ll find a conditional if block that

executes embedded statements when the mouse’s left-button is being pressed.

124 Chapter 6 n Sensing Sprite Position

Figure 6.5
This code block is used to initiate an action whenever a specific keyboard key is pressed.

When this is the case, a motion block is used to make the application’s sprite

follow the mouse-pointer around the stage. A second sensing code block is used

within another conditional if code block to detect when the sprite makes contact

with the edge of the stage. When this occurs, a looks code block is executed,

displaying a text message in a voice bubble.

Figure 6.7 demonstrates the output that is displayedwhen you rerun the application

with this new script and move the mouse-pointer to one of the edges of the stage.

Next, let’s take a look at an example of how to work with the second sensing block

shown in Figure 6.7. This code block can be used to detect when a sprite makes

contact with a specific color on the stage. To see a working example of how to

work with this code block, create a new Scratch application and then create and

add a new sprite in the shape of a red rectangle (using the Paint Editor), placing it

Determining when Sprites Collide with Other Objects 125

Figure 6.7
An example of the text that is displayed whenever the sprite makes contact with the edge of the stage.

Figure 6.6
These sensing blocks can be used to look for collisions.

in the middle of the stage. Next, add a second sprite to the application by clicking

on the Choose New Sprite from File button, opening the New Sprite window.

Next, drill down into the Fantasy folder and select the dragon1-b sprite and then

click on OK. The stage for your new application should now look like the

example shown in Figure 6.8.

Next, add the following script belonging to the sprite representing the dragon.

When executed, this script plays an audio file whenever the sprite is moved into

contact with the red square in the center of the stage.

Note that to correctly set the color specification in the sensing block, you must

click on the color block embedded within the control. This displays a small

eyedropper graphic that you can then move to the area on the stage that contains

the color you want to detect. Click on that color, and Scratch will automatically

change the code block’s color to match the color that you clicked on.

At this point you should have everything set up and ready to run. Go ahead and

run the application and then press and hold the left mouse button and move the

126 Chapter 6 n Sensing Sprite Position

Figure 6.8
This red square will be used to demonstrate the ability to detect a collision with a specific color on the
stage.

mouse-pointer on and off of the red rectangle in themiddle of the stage and listen

for the audio file to be played.

Using the previous code block, you can set up an application to detect a collision

any time any part of a sprite comes into contact with a specific color on the stage.

In the previous example, this occurs whenever any part of the dragon sprite

(head, tail, wings, flames, etc.) comes into contact with the red rectangle sprite.

However, if you prefer, you can use the third sensing code clock shown in

Figure 6.6 to set up a more specific type of collision test. Specifically, what this

code block does is allow you to specify a color on the sprite that must make

contact with another color on the stage for a collision to occur. To get a better

understanding of the difference between this code block and the previous sensing

code block, look at the following script.

The following script demonstrates how to use the second of these sensing blocks

in a script that plays an audio file whenever a specified color within a sprite comes

into contact with a specified color on the stage.

In this example, the sensing code block has been replaced. Now, for a collision to

occur, the yellow color on the sprite must come into contact with the red color on

the stage. If you were to replace the script in the previous application with this

script, then the only time a collision will occur is when the yellow flames coming

out of the dragon’s mouth touch the red rectangle sprite, as demonstrated in

Figure 6.9.

Determining Distance
Rather than detecting when one sprite collides with another sprite, youmay want to

detect when one sprite comes within a certain distance of another sprite or the

mouse-pointer. You can do this using the sensing code block shown in Figure 6.10.

Determining Distance 127

To develop an understanding of how to work with this code block, modify the

previous Scratch application, replacing the dragon sprite’s script with the script

shown here.

One you have replaced the script, run the application and then move the mouse-

pointer around the stage. When you do, the dragon sprite will follow, and

whenever it moves within 150 steps of the red rectangle sprite, an audio file will

be repeatedly played.

Working with a Timer
Another pair of sensing code blocks that you need to become familiar with is

shown in Figure 6.11. These code blocks provide the ability to enable and work

with Scratch’s built-in timer.

The first code block resets the timer back to its default value of zero, and the

second code block retrieves a number specifying how many seconds have passed

since the timer started running. Using Scratch’s timer, you can control the pace

128 Chapter 6 n Sensing Sprite Position

Figure 6.9
Setting up a more restrictive collision test.

Figure 6.10
This sensing block reports on a sprite’s distance from a specified object.

of animation and the operation of your Scratch applications. For example, you

would need to use these controls to keep track of time when players are given a

certain amount of time in which to make a move.

The following example demonstrates how to use both of these timer code blocks

to create a script that repeatedly plays an audio file for five seconds.

Retrieving Stage and Sprite Data
In addition to determining mouse status, sprite collisions, and the distance

between sprites, you can use the code block shown in Figure 6.12 to retrieve sprite

and stage information.

This code block provides easy access to a number of pieces of information,

including:

n X position

n Y position

n Direction

n Costume number

n Size

n Volume

Retrieving Stage and Sprite Data 129

Figure 6.11
These sensing blocks provide the ability to enable and use a timer within your Scratch application.

As an example of how to work with this code block, take a look at the following

script, which retrieves the X coordinate of a sprite named Sprite 2 and plays an

audio file whenever that sprite is moved to the right-hand side of the stage

(between coordinates 1 and 240).

Retrieving Audio Data
In addition to sensing mouse-pointer and keyboard data, collisions, distance,

and other stage and sprite properties and working with the timer, Scratch also

provides access to a pair of sensing blocks, shown in Figure 6.13, that allow you to

sense sound input from the computer’s microphone (if it has one) and to use that

input within your Scratch applications.

The first of these two sensing blocks retrieves a number, from 1 to 100, repre-

senting the volume of the computer’s microphone, and the second code block

retrieves a true/false value, depending on whether a sound value of 30 or greater

is detected through the computer’s microphone.

The following example demonstrates how to create a script that plays an audio file

named popwhenever a loud sound is detected through the computer’s microphone.

130 Chapter 6 n Sensing Sprite Position

Figure 6.12
This sensing block can be used to retrieve information about a number of object attributes.

Both of the code blocks shown in Figure 6.13 are monitor blocks, so if you want,

you can display their results on the stage, as demonstrated in Figure 6.14.

Code Blocks That Work with Sensor Boards
Scratch supplies additional sensing code blocks, as shown in Figure 6.15. In order

to work with these code blocks, you need a Scratch Board. A Scratch Board is a

special piece of hardware that you can buy from the Scratch website and then

attach to your computer. You can use the Scratch Board to collect and process

different environmental and user-provided input.

The first of these two blocks retrieves the value reported by one of the sensors on

a Scratch Board. The second code block retrieves a Boolean value of true or false,

depending on whether a specified sensor is being pressed. Learning how to work

with a Scratch Board is outside of the scope of this chapter. Instead, you will learn

Code Blocks That Work with Sensor Boards 131

Figure 6.13
These sensing blocks are used to report on how loud a sound is being played.

Figure 6.14
Using monitors to keep track of the loudness of audio playback and input.

how to programmatically interact with and control Scratch Boards in Chapter 14,

‘‘Collecting External Input Using a Scratch Board.’’

Creating the Family Scrapbook Application
The remainder of this chapter will guide you through the development of your

next Scratch application, an electronic family scrapbook. In total, this application

will consist of one sprite, a blank stage, and three scripts. Once created, you can

use this application to display any number of electronic photographs in an

automated photo album that displays pictures at three-second intervals. Each

picture in the application is actually just a costume added to the application’s

sprite. Figures 6.16 and 6.17 show how the application looks when displaying two

of the photo book’s pictures.

The development of this application project will be created by following a series

of steps, as outlined here:

1. Creating a new Scratch application project.

2. Adding and removing sprites and costumes.

3. Importing a sound file into the application.

4. Adding the programming logic required to play background music.

5. Adding the programming logic required to manage the display of photographs.

6. Saving and executing your work.

Step 1: Creating a New Scratch Project

The first step in creating the Family Scrapbook project is to create a new Scratch

application project. Do so either by opening Scratch, thereby automatically

creating a new Scratch application project, or by clicking on the New button

located on the Scratch menu bar.

132 Chapter 6 n Sensing Sprite Position

Figure 6.15
These sensing blocks are used in conjunction with a Scratch Board.

Step 2: Adding and Removing Sprites and Costumes

This application consists of a single sprite, which will be used to display all of the

application’s photographs (as costumes). Therefore, the default cat sprite will not

be needed and should be removed. After removing the cat sprite, click on the

Choose New Sprite from File button to open the New Sprite window. Using this

window, navigate to the folder containing the electronic image files (photo-

graphs) that you plan on displaying, and then select one of these files to be used as

the application’s sprite.

Click on the thumbnail representing the new sprite (in the sprites list) and then

click on the Costumes tab located at the top of the scripts area. Next, click on the

Creating the Family Scrapbook Application 133

Figure 6.17
Another example of one of the sprite’s costumes.

Figure 6.16
An example of one of the sprite’s costumes.

Import button, opening the Import Costume window. Using this window, add

another picture to the application. Repeat this process as many times as necessary

to add all of the image files that you want to be included as part of the family

scrapbook, as demonstrated in Figure 6.18.

Step 3: Adding a Suitable Audio File to the Stage

To make the Family Scrapbook application more enjoyable, let’s add a little

background music to help set the mood. To add the music file, select the stage

thumbnail in the sprites list and then click on the Sounds tab located at the top of

the scripts area. Next, click on the Import button to display the Import Sound

window and then double-click on the Music Loops folder and then select the

GuitarChords1 audio file and click on OK, adding the sound file to the appli-

cation project, as shown in Figure 6.19.

134 Chapter 6 n Sensing Sprite Position

Figure 6.18
You can add as many pictures as you want to the sprite’s list of costumes.

Step 4: Playing the Audio File

The next step in the development of the application project is to begin adding the

programming logic. In total, you will need to add three scripts to the project, one

for the stage and two for the application’s sprite.

The script to be added to the stage will be responsible for playing the applica-

tion’s background music. To create this script, click on the stage thumbnail

located in the sprites list and then select the Scripts tab located at the top of the

scripts area. Next, add and configure the following code blocks exactly as shown

here.

This script manages the repeated playback of the application’s audio file for as

long as the application is run. Audio file playback is performed using a pair of

sound blocks, which you will learn about in Chapter 11, ‘‘Spicing Things Up with

Sounds.’’

Step 5: Displaying the Photographs

Now it is time to add the programming logic that is responsible for displaying all

of the photographs that make up the Family Scrapbook. To set this up, you need

to add a small script to the application’s sprite that specifies the programming logic

required to automate the display of all of the application’s photographs, at three-

second intervals. In addition, you will add a second script to the application

Creating the Family Scrapbook Application 135

Figure 6.19
Adding background music to be played when the application executes.

that will allow the user to manually control the display of the application’s

photographs.

Scripting the Operation of the Family Scrapbook

The code blocks that are responsible for automating the operation of the

scrapbook are shown here:

This script is automatically executed when the user clicks on the green flag button.

When this happens, a looks block is executed. This block specifies a specific costume

to be displayed when the application is first started (the first costume in the costume

list). Next, a loop is set up that repeatedly executes the two statements embedded

within it. The first code block located inside the loop pauses the script’s execution

for three seconds, after which a second looks block is used to switch the sprite’s

costume to the next costume in the sprite’s costume list.

Allowing for the Manual Operation of the Family Scrapbook

If the user prefers, rather than viewing photographs in the Family Scrapbook as

an automated slideshow, the contents of the scrapbook can be manually browsed

by clicking on the application’s sprite, which causes the next costume (photo-

graph) to be displayed. To provide the user with this manual option, add the

following script to the application’s sprite.

Step 6: Saving and Executing Your
New Scratch Application

Okay, assuming that you have been following along and creating your copy of the

Family Scrapbook application as you made your way through this chapter, then

your copy of the Family Scrapbook application should look something like the

example shown in Figure 6.20.

136 Chapter 6 n Sensing Sprite Position

So, if you have not done so yet, save your new application by clicking on the Save

button located on the Scratch menu bar. This will display the Save Project

window, allowing you to name the application and specify the location where

you want to store it. Once saved, switch to Presentation mode, click on the green

flag button, and kick back and enjoy listening to and watching your new

application. Alternatively, start clicking on the application’s sprite and go

through the contents of the Family Scrapbook at your own pace.

Summary
This chapter has provided a review of all of the Scratch sensing code blocks

(except for the ones that work with Scratch Boards). You learned how to detect

collisions, identify when the left mouse button or a keyboard key is pressed, and

even to determine when a sprite comes into contact with different colors on the

Summary 137

Figure 6.20
The completed application consists of a blank stage and a single sprite with 11 costumes and two
scripts.

stage. You learned how to work with the timer as a means of controlling

application activity. This chapter also showed you how to retrieve different

property values belonging to sprites and the stage and to detect the loudness of

microphone input. Use of the information presented in this chapter is key to the

development of interactive Scratch applications and games.

138 Chapter 6 n Sensing Sprite Position

Storing and Retrieving
Data

All computer applications require some sort of data with which to work as they

execute. This is true of even the simplest applications. The data processed by an

application may be embedded within it. Data may also be randomly generated or

collected from the user as the application executes. In order to work with and

manipulate data, programmers need the ability to store, retrieve, and modify

data when an application runs. Within Scratch applications, data is managed

using variables. The goal of this chapter is to teach you everything you need to

know to begin developing Scratch applications that can collect, store, and process

application data.

The major topics covered in this chapter include:

n How to create local and global variables

n How to use variables as a means of storing and retrieving data

n How to delete variables that are no longer needed

n How to view data stored in local variables belonging to other sprites

Learning How to Work with Application Data
Like all computer programs, Scratch applications need to be able to process and

store data. Data is any type of information that your Scratch applications collect,

process, and store when executing. Data can also be collected when the user

139

chapter 7

interacts with the application using the keyboard or mouse. Data may be gen-

erated by your applications such as when you create a Scratch project that

generates and then uses random numbers (covered in Chapter 8). Data may also

be hard-coded within your Scratch application projects. For example, the code

block shown in Figure 7.1 can be used to store and display a text string within a

script.

When executed, a script containing this looks code block will display the hard-

coded text string inside a voice bubble. Like most programming languages,

Scratch lets you work with a number of different types of data. Each of these

different types of data, listed next, is handled differently by Scratch.

n String

n Boolean

n Integer

n Real

A string is a piece of text data that you hard code within Scratch applications

using different types of looks code blocks, which you will learn how to work with

in Chapter 10, ‘‘Changing the Way Sprites Look and Behave.’’ Boolean data is

data that is automatically generated by Scratch when you work with different

types of numbers code blocks (which you will learn about in Chapter 8). A

Boolean value represents data that has an assigned value of either True or False.

For example, any time you compare one numeric value against another to see if

they are equal, Scratch returns a Boolean value. Based on the result of that

analysis, you can alter the way your Scratch applications execute using control

blocks, which are covered in Chapter 9, ‘‘Conditional and Repetitive Logic.’’

An integer is a numeric value that does not include a decimal point (sometimes

referred to as a whole number). Scratch lets you enter integer values as input into

numerous different types of code blocks. It also allows you to store numeric data

inside variables, allowing you to store, retrieve, and manipulate the data as

140 Chapter 7 n Storing and Retrieving Data

Figure 7.1
An example of text embedded within a looks code block.

necessary during application execution. A real number is a number that includes

a decimal number.

Scratch handles different types of data differently. For example, string data can

only be displayed by embedding it within looks code blocks. Integer and real data

can also be embedded within code blocks and displayed in monitors. In addition,

integer and real data can be added, subtracted, and manipulated in all the dif-

ferent ways that you would to be able to manipulate numeric data. Scratch also

allows you to use integers and real numbers interchangeably.

No t e

Industrial strength programming languages Microsoft C++ and Visual Basic support a much wider
range of data types. However, they all support the same basic types of data that Scratch does.

Storing Data in Variables
As has already been stated, you can embed numeric data inside different types of

code blocks, using it to control the operation of scripts. You can also store

numeric data collected when your applications execute using variables. In

Scratch, variables allow you to store, retrieve, and modify numeric data.

No t e

Scratch cannot store string or Boolean data in variables.

Creating Scratch Variables

In order to store, modify, and retrieve data in a Scratch application, you need to

create variables. In order to work with variables within your Scratch applications,

you must first define and add them to your application projects. This is done by

clicking on the Variables button located at the top of the blocks palette and then

clicking on the Make a Variable button, as shown in Figure 7.2.

Once this button has been clicked, Scratch displays the window shown in Figure 7.3,

allowing you to assign a name to the variable.

Storing Data in Variables 141

Figure 7.2
Creating and deleting Scratch variables.

The name that you assign will be used to create and add three new code blocks to

your Scratch project, as shown in Figure 7.4.

In addition, a monitor showing the variable’s value is automatically displayed on

the stage, as demonstrated in Figure 7.5.

Using the three code blocks created for every variable, you can assign an initial

value to the variable, change its value while your application is running, and

display a monitor on the stage, which shows the variable’s value.

Assigning Variables to Sprites and the Stage

Variables in Scratch applications belong to the sprites in which they are defined

(or to the stage). Therefore, it is important that when adding new variables to

your application, you select the thumbnail for the sprite (or stage) where the

variable belongs. For example, variables that need to be accessed by different

142 Chapter 7 n Storing and Retrieving Data

Figure 7.3
Assigning a name to a new Scratch variable.

Increment a Variable’s Value

Retrieve a Variable’s Value

Assign a Variable’s Value

Figure 7.4
Scratch creates three new code blocks for each variable that you create.

Figure 7.5
Every new variable supports a monitor that displays its value.

scripts belonging to different sprites may best be added to the stage, whereas a

variable needed only by a specific sprite should be added to that sprite.

Assigning Names to Your Variables

Unlike many programming languages, Scratch is very flexible when it comes to

naming variables. You can make variable names as long or as short as you want.

Variable names can include:

n Letters

n Numbers

n Special characters

n Blank spaces

Because Scratch creates an endless supply of code blocks for each new variable

that you define, it eliminates any concerns about case-sensitivity, making things a

lot easier to work with.

T i p

Make your variable names as descriptive as possible. This will help make your scripts self-
documenting. Although Scratch variable names can be extremely long, it’s a good idea to limit
their length to a maximum of 30 characters. This provides you with plenty of room to create
descriptive, manageable variable names.

Understanding Variable Scope

One very important concept that you need to understand when working with

variables is variable scope. A variable’s scope identifies the location within an

application where the variable’s value can be modified. Scratch supports two

levels of variable scope, as outlined here:

n Local. Variables that can be modified only by scripts belonging to the sprite

in which the variable is defined.

n Global. Variables that can be modified by any script in an application.

No t e

Although local variables can only be modified by scripts belonging to the sprite in which they are
defined, their assigned values can be retrieved (not modified) by scripts belonging to other sprites
using sensing code blocks, as demonstrated a little later in this chapter.

Storing Data in Variables 143

Creating Local Variables

Local variables can be modified only within the sprite in which they are defined.

The following procedure outlines the steps involved in creating a local variable.

1. Select the sprite (or stage) to which the variable is to be added.

2. Click on the Variables button located at the top of the blocks palette.

3. Click on the Make a Variable button.

4. Enter the name you want to assign to the variable and then select the For

This Sprite Only option, as demonstrated in Figure 7.6.

Since a local variable can only be modified within the sprite to which it has been

added, it cannot be modified by scripts belonging to other sprites. If you need a

variable that can be accessed by any script within an application, create a global

variable as discussed in the next section.

Creating Global Variables

Unlike local variables, a global variable’s value can be modified by any script

within the application where it has been defined. You use the exact same pro-

cedure to create a global variable as you do when creating a local variable, the

only difference being that you need to leave the default For All Sprites option

selected when naming your variable, as demonstrated in Figure 7.7.

T i p

It is considered a good programming practice to restrict the scope of all variables to local whenever
possible. This helps to make your applications easier to maintain and eliminates the possibility that
you might accidentally modify the variable’s value using scripts belonging to other sprites.

144 Chapter 7 n Storing and Retrieving Data

Figure 7.6
Creating a local variable named Counter.

Deleting Variables when They Are No Longer Needed
Over time, you may find yourself making numerous changes to your Scratch

projects. As you do, you may find that certain variables are no longer needed by

your applications. If this is the case, you can clean up your applications by

deleting these variables from your projects. Doing so is very easy: First, make sure

that any references to the variable within the application’s scripts have been

removed and then click on the Delete a Variable button, as demonstrated in

Figure 7.8, and select the variable that you want to delete. In response, Scratch

will delete the variable from the sprite to which it was added.

C au t i o n

If you delete a variable from a sprite without first removing references to the variable in the
sprite’s scripts, Scratch will delete the variable but will also leave in place any code blocks in the
application’s scripts that reference that variable. As a result, things will not work properly.

Accessing Variables Belonging to Other Sprites
Although data stored in local variables can only be changed by scripts belonging

to the sprite to which the variables have been assigned, Scratch does allow scripts

belonging to other sprites to view data stored in variables belonging to other

sprites. To view data stored in another sprite’s local variables, you need to use the

sensing block shown in Figure 7.9.

Accessing Variables Belonging to Other Sprites 145

Figure 7.7
Creating a global variable named Total Score.

Figure 7.8
Deleting a variable that is no longer needed.

This code block lets one sprite retrieve another sprite’s X position, Y position,

direction, costume number, size, and volume. It also lets you retrieve values

assigned to another sprite’s variable. As demonstrated in Figure 7.10, you can

click on the code block’s right-hand pull-down menu, and it will display a listing

made up of the stage and all of the sprites in the Scratch application.

After selecting the stage or a sprite, you can use the drop-down menu located on

the left-hand side of the code block to select and retrieve information for any of

the specified items that are listed. A gray horizontal divider bar located at the

bottom of the resulting list denotes the sprite’s list of variables, separating the list

from other available data, as demonstrated in Figure 7.11.

Using this code block, you can retrieve data stored in any sprite’s local variables.

However, all you can do is read the value assigned to those variables; you cannot

modify them. The only variables that can be remotely modified are global

variables.

146 Chapter 7 n Storing and Retrieving Data

Figure 7.9
Using this code block, you can create a script that can view data stored in another sprite’s local
variables.

Figure 7.10
Specifying the name of the sprite whose variable you want to access.

Figure 7.11
Selecting the variable whose data you want to access.

Working with Variable Monitors
As you learned back in Chapter 3, ‘‘A Review of the Basic Components of Scratch

Projects,’’ Scratch supports the display of monitors for many of its code blocks,

including variable code blocks. In addition to being able to display a variable’s

value in either normal or large readout, variable monitors also support a third

slider bar monitor format. To display a slider bar for any variable, enable the

display of the variable’s monitor and then right-click on the resulting monitor

and select the Slider option from the popup menu that is displayed.

Sliders have a small round handle on them that you can drag to modify the value

assigned to a variable. By default, you can use the slider to assign a value in the range

of 1 to 100 to its variable, although you can assign any value to the variable by

keying it into the code block’s input field. If you need to, Scratch will let you change

a slider bar’s range by right-clicking on it and selecting the Set Slider Min and Max

option from the popup menu that is displayed. When you do this, the window

shown in Figure 7.12 displays, allowing you to specify any range you want.

Two Quick Examples
To help you become more comfortable with working with variables, let’s look at

two quick examples. In the first example, shown next, a script has been created

that when executed will display the value assigned to a variable named Counter.

Remember, by default every variable that you create has a reporter block with an

associated monitor, which Scratch displays by default on the stage.

Two Quick Examples 147

Figure 7.12
Configuring the upper and lower limits of a variable’s slider control.

No t e

To set up and run this example, you must create a new application and add a variable named
Counter to it and then add the script to the application’s default script.

This script has been set up to execute whenever the green flag button is pressed. It

uses a control block to set up a loop that repeats the execution of two embedded

code blocks a total of 10 times. Each time the loop executes, the value assigned to

a variable named Counter is increased by 1. The next statement pauses the loop

for one second before allowing it to continue running.

By default, Scratch assigns a default value of zero to all new variables, which is

why the first time you run the previous script, it counts from 1 to 10. However, if

you run it again, you will notice that it will count from 11 to 20. If you want, you

can change this behavior by explicitly assigning an initial value to the Counter

variable, as demonstrated in the following example:

Here, the value of Counter has been set to 0 through the addition of a new

variable block at the beginning of the script, immediately after its hat code block.

As a result, no matter how many times this script executes, it always counts from

1 to 10.

Developing the Basketball Quiz Project
The rest of this chapter is devoted to guiding you through the development of

your next Scratch application, the NBA Trivia Quiz. This application makes

extensive use of variables to store and retrieve player input and to keep track of

the player’s quiz results. In total, the application is made up of a background, six

sprites, and six scripts.

When executed, this application presents the user with an electronic quiz made

up of five questions, designed to evaluate the user’s knowledge of NBA trivia.

148 Chapter 7 n Storing and Retrieving Data

Figure 7.13 shows an example of how the game looks when first started. To begin

game play, the user must click on the sprite representing the game’s hostess, at

which point she will begin administering the quiz.

Figure 7.14 provides an example of how the hostess interacts with the user when

administering the quiz.

The hostess provides the user with immediate feedback after each question is

answered, letting the user know if the answer was correct or incorrect. In

addition, the user’s score is automatically tabulated after each answer is evaluated

and displayed in a monitor located at the lower right-hand side of the stage.

Developing the Basketball Quiz Project 149

Figure 7.14
The user answers questions by clicking on buttons labeled A, B, C, and D located on the right-hand side
of the stage.

Figure 7.13
The NBA Trivia Quiz presents the user with a series of multiple choice questions.

The development of this application project will be created by following a series

of steps, as outlined here:

1. Creating a new Scratch application project.

2. Adding a background to the stage.

3. Adding and removing sprites and costumes.

4. Adding variables needed by the application.

5. Adding scripts to each button sprite to collect user answers.

6. Adding the programming logic required to administer the quiz.

7. Saving and executing your work.

Step 1: Creating a New Scratch Project

The first step in creating the NBA Trivia Quiz application is to create a new

Scratch application project. Do so by starting Scratch, thereby automatically

creating a new Scratch application project or, if Scratch is already running, by

clicking on the New button located on the Scratch menu bar.

Step 2: Selecting an Appropriate Stage Background

Once you have created your new Scratch project, it is time to get to work. Let’s

begin by adding an appropriate background to the stage. To do so, click on the

blank stage thumbnail located in the sprite list. Once selected, modify its back-

ground by clicking on the Backgrounds tab located at the top of the scripts area.

To add a new background to the application, click on the Import button. When

the Import Background window opens, click on the Indoors folder and then

select the basketball-court thumbnail and click on the OK button.

Since this application only requires one background, you can remove the default

blank background named background1 from your project by clicking on its Delete

This Costume button.

Step 3: Adding and Removing Sprites

This application consists of a number of sprites, representing a hostess who is

responsible for administering the quiz, four buttons on which the user must click

150 Chapter 7 n Storing and Retrieving Data

when answering quiz questions, and a graphic containing a welcoming text

message. Before adding any sprites, go ahead and remove the cat sprite from the

application, since it will not be needed.

To add the sprite representing the game’s hostess, click on the Choose New

Sprite from File button to open the New Sprite window. Drill down in to the

People folder and then select the girl3-standing sprite and click on the OK

button. Enlarge the sprite and reposition it as demonstrated in Figures 7.13

and 7.14. While you are at it, change the name assigned to the sprite to say

host.

Next, click on the Choose New Sprite from File button and then drill down

into the Things folder and select the button sprite and click on the window’s

OK button. Once the button sprite has been added, select it in the sprites list,

click on the Costumes tab located at the top of the scripts area, and then click

on the Edit button. This will open the sprite in the Paint Editor program.

Click on the Text button located on the Paint Editor’s toolbar and then

specify ComicSans as the font type and 18 as the font size, type an uppercase

letter A onto the middle of the button sprite, and then click on OK. Next,

rename the sprite A.

Using the same series of steps outlined in the previous paragraph, add three

additional instances of the button sprite to the application, naming them B, C,

and D. Once added, align all four of the button sprites along the right-hand side

of the stage, as demonstrated in Figures 7.13 and 7.14. At this point, you only

have one last sprite to add. This sprite will need to be created from scratch. To do

so, click on the Paint New Sprite button and then after specifying ComicSans as

the font type and 18 as the font size, type Welcome to the NBA trivia quiz! as

demonstrated in Figure 7.15 and click on the OK button.

Once added, reposition this new sprite at the top of the stage, as shown in

Figures 7.13 and 7.14.

Step 4: Adding Variables Required by the Application

In order to execute, this application needs three variables as shown in Figure 7.16.

To add these three variables to the application, click on the Variables button

located at the top of the blocks palette and then click on the Make a Variable

button three times to create three global variables named Answer, Clicked, and

Score.

Developing the Basketball Quiz Project 151

The variable named Answerwill be used to keep track of the user’s answers to each

quiz question. The variable named Clicked will be used to control application

execution, making sure that the script used to administer the quiz pauses and

waits each time the user is prompted to answer a new question. The variable

named Score will be used to keep track of the user’s score (grade).

152 Chapter 7 n Storing and Retrieving Data

Figure 7.16
The NBA Trivia Quiz requires the addition of three global variables.

Figure 7.15
Creating a new sprite needed by the NBA Trivia Quiz.

By default, Scratch will display monitors on the stage for all three of these

variables. However, the game only needs to display the Scoremonitor. Therefore,

you should clear the monitor check boxes for the Answer and Clicked variables.

Also, the monitor for the Score variable needs to be moved to the lower right-

hand corner of the stage.

Step 5: Adding Scripts to Button Sprites
to Collect User Input

The programming logic that controls the overall administration of the quiz will

be added to the host sprite, which is responsible for displaying quiz questions,

collecting user answers, and then grading the results. In order to answer quiz

questions, the user must click on one of the four sprite button (A, B, C, or D)

when prompted by the hostess. Each of these four sprites has a small script

belonging to it, which sets two variables when it is clicked. Below is the script that

is executed when the A sprite is clicked.

As you can see, this script begins with a hat block that executes whenever the A

button is clicked. When this happens, the valued assigned to the Clicked variable

is set to 1, and the value assigned to the Answer variable is also set to 1.

The Clicked variable is used in the application to keep track of when the user

answers a question. This variable’s value is set to 1 when the A sprite is clicked,

indicating that the user has submitted an answer. Once the answer has been

evaluated by a script belonging to the host sprite, the value of Clicked is set back

to 0, making the application ready to process a new question. The Answer variable

is used to identify which button has been clicked. Assigning a value of 1 to this

variable indicates that the A sprite has been clicked.

The programming needed by the B sprite is shown next. As you can see, it is

almost identical to the code assigned to the A sprite, with the value assigned to

Developing the Basketball Quiz Project 153

the Clicked variable being set to 1 when the button is clicked. Note that the value

assigned to the Answer variable is 2, indicating that the second button (the B

sprite) has been clicked.

The code blocks that make up the C sprite scripts are shown next. As you can see,

the third code block is used to identify when it is clicked.

As you have probably anticipated, the code blocks that make up the script for the

D sprite, shown next, assign a value of 4 to the Answer variable.

Step 6: Automating the Administration of the Quiz

At this point, you should have added scripts to each of the button sprites that

indicate when they have been clicked and uniquely identify which of the four

buttons was selected. Now it is time to create the two scripts belonging to the host

sprite. The first script, shown next, is responsible for starting the application and

getting the application ready to administer the quiz.

154 Chapter 7 n Storing and Retrieving Data

Developing the Basketball Quiz Project 155

As you can see, this script has been set up to execute when the user clicks on the

green flag button. When this happens, the values assigned to all three of the

script’s variables are set to 0 (setting the score to zero, indicating that none of

the buttons have been clicked, and that no answer has been specified). Next, two

looks code block are used to display instructions, welcoming the user and then

instructing her to click on the hostess when ready to begin taking the quiz.

The host sprite’s second script, shown here, is responsible for the overall admin-

istration of the quiz. As you can see, it is pretty big and is made up ofmany different

types of code blocks, some of which you have not learned about yet. As such, only a

high-level overview of the script will be provided in this chapter. Once you have

read Chapters 9 and 10, you may want to return and review this script again.

156 Chapter 7 n Storing and Retrieving Data

This script begins with a hat code block that executes when the user clicks on the

host sprite. Next, the script’s execution is paused for one second, and then a looks

block is used to display a text message, presenting the user with the quiz’s first

question. The next code block, which contains a pair of embedded code blocks,

pauses script execution and waits until the value assigned to the Clicked variable

is set to 1 (which will occur only when the user specifies an answer by clicking on

one of the four button sprites).

The value assigned to Clicked is then reset to 0, making the variable ready

for the next quiz question. Next, a control code block is used to evaluate the

user’s answer to the quiz question. This is accomplished by checking to see

if the player clicked on the A sprite, as indicated by a value of 1 being

assigned to Clicked. If this is the case, the user’s score is increased by 20, and a

looks block is used to display a text message informing the user that her answer

was correct. If this is not the case, the user is notified that the answer provided

was incorrect.

The next four quiz questions are administered using programming logic that is

identical to that used to administer the first question, the only difference being

that a different question is presented, and a different answer is required. Finally,

once the last quiz question has been processed, the script’s execution is paused

for two seconds, after which the user’s grade (the value assigned to Score) is

evaluated to see if it is greater than 60, in which case the hostess announces that

the user has passed the quiz. If this is not the case, the hostess announces that

the user has failed. Either way, a three-second pause ensues, after which the

values assigned to all three variables are reset to their default starting value of 0,

to make the quiz ready for the next person. Finally, one last control block is

executed, ensuring that all scripts within the application terminate their

execution.

Step 7: Saving and Executing Your New Application

At this point, you have all the information needed to create your own copy of

the NBA Trivia Quiz. Assuming that you have been following along and

creating your copy of the application as you made your way through this

chapter, then your application project should look something like the example

shown in Figure 7.17.

If you have not done so, go ahead and save your new application. Once saved,

switch to Presentation mode and start the NBA Trivia Quiz. As you test your new

application, make sure that the feedback being provided by the hostess after each

answer is correct. In addition, keep an eye on the Score monitor and make sure

that the game is correctly tabulating your grade.

Developing the Basketball Quiz Project 157

Summary
In this chapter you learned how to create variables and use them to store and

retrieve numeric data. This included learning how to create both local and global

variables and how to use them within Scratch projects to control the application

execution. You also learned how to set up and configure variable monitors and to

change variable values using a slider control. This chapter also showed you how

to delete variables when you no longer need them.

158 Chapter 7 n Storing and Retrieving Data

Figure 7.17
The completed application consists of a stage background, six sprites, and six scripts.

Doing a Little Math

Scratch provides robust support for performing mathematical calculations. This

gives you the ability to develop applications that can manipulate numeric data in

a variety of ways. Scratch provides this support through numbers code blocks.

Numbers code blocks are reporter blocks and therefore can only be used in

conjunction with stack code blocks. This chapter will provide a thorough review

of each of these code blocks and will also show you how to create a new Scratch

application, the Number Guessing game.

The major topics covered in this chapter include:

n Learning how to add, subtract, multiply, and divide programmatically

n Learning how to generate random numbers using any range you specify

n Instruction on how to perform different types of numeric comparisons

n Learning how to perform a number of built-in mathematical operations

Addition, Subtraction, Multiplication, and Division
Like all modern programming languages, Scratch provides programmers with

the ability to add, subtract, multiply, and divide numeric data. This capability is

offered through the code blocks shown in Figure 8.1.

159

chapter 8

The use of these code blocks is quite intuitive, with each code block clearly

identifying its usage. These code blocks can be embedded within any Scratch

code block that accepts numeric input. For example, the following script

demonstrates how to use these code blocks to modify the value assigned to a

variable named Count.

Here, the script begins by assigning an initial value of 10 to Count. Next, four sets

of code blocks are executed. Each set consists of one stack block and two reporter

blocks. The first set of statements sets the value of Count equal to the value

currently assigned to Count plus 5, making Count equal to 15. The second set of

code blocks sets Count equal to the value currently assigned to Count minus 5,

making Count equal to 10. The third set of code blocks sets Count equal to the

current value of Count times 5, making Count equal to 50. Lastly, the last set of

code blocks changes the value of Count to 10 by dividing its current value by 5.

Understanding the Mathematical Order of Precedence
As is the case with all programming languages, Scratch allows you to string

together different combinations of numbers code blocks in order to create more

complicated numeric calculations. For example, take a look at the following script.

Here, a small script has been created that evaluates a numeric expression and

assigns the result to a variable named Total. This equation was created by em-

bedding a series of numbers code blocks within one another. Specifically, the

160 Chapter 8 n Doing a Little Math

Figure 8.1
These code blocks provide Scratch programmers with the ability to perform arithmetic calculations.

equation was created by embedding the code blocks shown in Figure 8.2 into one

another.

As shown in Figure 8.2, the equation was assembled by embedding the division

code block into a variable block. Next, the addition code block was embedded

within the left-hand side of the division code block. Finally, a multiplication code

block and a subtraction code block are embedded within the input fields of the

addition code block.

Like all programming languages, Scratch evaluates the components of mathema-

tical expressions by following a specific order, referred to as the order of precedence.

Specifically, Scratch evaluates an expression using a top-down approach. When

applied to the example shown in Figures 8.2, Scratch evaluates it as follows:

1. First, it calculates the value of the two top code blocks. Therefore, 4 is

multiplied by 5, yielding a value of 20, and 2 is subtracted from 4, yielding

a value of 2. At this stage, the expression has been evaluated as shown

here.

20 þ 2 / 2

2. Next, the expression located in the second level code bock (the addition

block) is evaluated. Therefore, 20 is added to 2, yielding a value of 22. At this

stage, the expression has been evaluated as shown here.

22 / 2

3. Finally, the lowest level code block is evaluated, dividing 22 by 2 and re-

sulting in a final value of 11.

Generating a Random Number
Some applications, such as computer games, require an element of randomness

or chance. For example, a game that needs to simulate the rolling of dice needs to

be able to create a pair of random numbers in the range of 1 to 6. Scratch provides

the capability through the code block shown in Figure 8.3.

Generating a Random Number 161

Figure 8.2
Creating complex formulas by assembling different combinations of code blocks.

This code block provides ameans of generating random integer (whole) numbers

using any specified range of numbers. The default range is 1 to 10, but you may

change the input fields to suit your needs. If needed, you can generate negative

numbers. In addition to hard coding a numeric range into the control, you can

substitute variable blocks by dragging and dropping them into either or both of

this code block’s input fields.

To develop an understanding of how this code block works, look at the following

example:

Here, a script has been created that begins by assigning a variable named Count a

starting value of 0. Next, the variable’s value is changed by assigning it a ran-

domly selected value in the range of 1 to 5. A loop is then set up to repeat the

execution of two embedded code blocks. The loop is designed to repeat a spe-

cified number of times and is set up by default to execute 10 times. However, by

dragging and dropping an instance of the Count variable block into the loop’s

input field, the number of times that the loop executes is randomly determined,

depending on the randomly assigned value of Count.

No t e

Each time the loop executes, it plays an audio file that sounds like a cat meowing. In order to give
the audio file time to finish playing, a control block was added to pause script execution for one
second. To see this script in action, create a new Scratch application and add the script to the
default Cat sprite.

Comparison Operations
In order to work with numbers, you often need to mathematically manipulate

them as demonstrated in the previous section. Doing so will ultimately leave you

with a result. Typically, you will want to do something with this result once it has

162 Chapter 8 n Doing a Little Math

Figure 8.3
By default, this code block is configured to generate a number in the range of 1 to 10.

been calculated. For a simple application, all you may need to do is display its

value. However, more often than not, you are going to end up using it to guide

the execution of your application in some manner. For example, suppose you

want to create a number guessing game that automatically generates a random

number and then challenges the player to try to guess it. Once the random

number is generated and stored in a variable, the player needs to be prompted to

try to guess it (perhaps by clicking on one of 10 buttons with numbers printed on

them). Once the player’s guess is captured, the application needs to compare the

player’s guess against the value of the variable that stores the game’s random

number to determine whether the player’s guess is correct. To facilitate this type

of comparison operation, Scratch provides access to the three code blocks shown

in Figure 8.4.

The first and last code blocks shown in Figure 8.4 allow you to compare one value

against a range of values. The first code block checks to see if the numeric value

specified in its first input field is less than the value specified in its second input

field. The third code block does the opposite, checking to see if the numeric value

specified in its first input field is greater than the value specified in its second

input field. The middle code block is used to determine if two values are equal.

To develop a better understanding of how to work with each of these three code

blocks, let’s look at a few examples. In the first example, shown below, a script has

been created that executes whenever the green flag button is clicked. When this

happens, the value Count is set equal to 10. Next, a numbers block is embedded

within a control block to set up a conditional test that evaluates the value

assigned to Count and to execute the code block embedded within the control

block in the event that the tested condition (Count equals 10) is true. Since this is

the case, a text string of Hello! is displayed in a speech bubble.

No t e

To prove that the embedded numbers code block is working as it is supposed to, you could change
the value assigned to Count to something other than 10 and run the example again. Since the
value assigned to Count no longer equals 10, the tested condition would evaluate as false, and
the text message would not display.

Comparison Operations 163

Figure 8.4
These code blocks provide the ability to compare any two numeric values.

In this next example, the numbers code block that tests for greater than conditions

is used. Again, a script has been set up to execute whenever the green flag button is

clicked. The value assigned to Count is then set to 1, and a control block is used

to set up a loop that runs forever (until you provide a means for stopping its

execution). A number of code blocks are embedded within the loop. The first block

plays an audio file, and the second block pauses script execution for one second to

allow Scratch time to finish playing the file. Another control block is then used to

set up a conditional test that evaluates the value assigned to Count to see if it is

greater than 2, and if it is, another control block is used to terminate the script’s

execution. If the value assigned to Count is not greater than 2, then the last code

block located at the bottom of the loop is executed, incrementing the value of

Count by 1. The loop then repeats and executes again.

The first time the loop runs, the value assigned to Count is 1. The loop must

iterate two times before the value of Count is set to 3, resulting in the termination

of the script’s execution. Because of this, the audio file will play three times.

In this final example, shown next, the numbers code block that tests for less than

conditions is used. Like the last two examples, this script is set up to execute

whenever the green flag button is clicked. When this happens, the value of Count

is set to 1. Next, a loop is set up that repeatedly executes as long as the value of

Count is less than 15. Each time this test evaluates as true, three embedded code

blocks are executed. The first code block moves the sprite 25 steps. The next code

block increments the value assigned to Count by 1, and the last code block pauses

script execution for one second.

164 Chapter 8 n Doing a Little Math

The way this script is written, its loop will execute 14 times and will stop

executing when the value of Count finally reaches 15.

T r i c k

While Scratch only supplies you with three code blocks for performing conditional tests (equality,
greater than, and less than), most programming languages support three additional types of
conditional tests, allowing you to perform the following comparison operations:

n Greater than or equal to

n Less than or equal to

n Not equal to

Although Scratch does not provide equivalent code blocks, you can easily set up equivalent
comparison tests by combining the three code blocks just discussed with Scratch’s logical com-
parison code blocks, as shown in Figure 8.5.

The first combination of code blocks shown in Figure 8.5 creates a test that determines if the value
assigned to a variable named Total is less than or equal to 10. This example is made up of five
code blocks----two variable blocks, two numbers code blocks used to perform less than and
equality comparisons, and another numbers block, which is used to tie everything together. The
second combination of code blocks shown in Figure 8.5 is very similar and is designed to create a
test that checks to see if the value assigned to Total is greater than or equal to 5. The last
example is made up of three code blocks and is used to evaluate the values assigned to Total to
determine to see if it is not equal to 3. You will learn more about code blocks that support logical
comparisons in the next section.

Comparison Operations 165

Figure 8.5
Creating customized logical comparisons.

Performing Logical Comparisons
In addition to code blocks designed to perform mathematical and comparison

operations, Scratch also provides access to three code blocks that support logical

comparison operations. These code blocks are shown in Figure 8.6.

The first code block is used to test two different sets of values to determine if both

are true. The second code block is used to test two different sets of values to

determine if at least one is true. And the last code block lets you evaluate two

values to determine if the tested condition is false (not true).

To help you better understand how to work with all three of these code blocks,

let’s review a few examples. The first example, shown next, is a script that exe-

cutes whenever the green flag button is clicked. When this occurs, the value

assigned to the variable Count is set to 50. Next, a control code block is used to

analyze the value assigned to Count. If the value of Count is less than 100 and also

greater than 10, then the end statement embedded within the control block is

executed. However, if both tested conditions evaluate as false, the embedded

code block is not executed.

No t e

Scratch is very flexible in its support for numbers blocks. For example, if you prefer, you could
swap the order in which the two embedded numbers blocks occur (e.g., checking to see that
Count is greater than 10 before checking to make sure that Count is also less than 100), and
the results would be the same.

This next example is very similar to the previous example, except that instead of

ensuring that both tested conditions evaluate as being true, the script has been

166 Chapter 8 n Doing a Little Math

Figure 8.6
Using these code blocks, you can perform more complex comparison operations.

modified so that only one of the tested conditions has to be evaluated as true in

order for the embedded code block to be executed.

This final example shows a script that performs a negative test, checking to see if

two values are not equal instead of checking to see if they are equal. As a result, if

the value assigned to Count is not equal to 50, which it is not, the code block

embedded within the control block is executed.

Rounding Numbers and Retrieving Remainders
The next set of numbers code blocks, shown in Figure 8.7, provides the ability to

retrieve the remainder portion of any division operation and lets you round any

decimal number to the nearest whole number.

The first code block shown in Figure 8.7 returns the remainder portion of a

division operation, also referred to as a modulus, as demonstrated in the following

example, which divides 10 by 3 and then assigns the modulus (a value of 1) to a

variable named Remainder.

Rounding Numbers and Retrieving Remainders 167

Figure 8.7
These code blocks retrieve remainders and round numbers.

The second code block shown in Figure 8.7 returns the rounded value for a

specified numeric value, rounded to the nearest whole number, as demonstrated

in the following examples, which return values of 4 and 5, respectively.

Working with Built-in Mathematical Functions
In addition to all of the mathematical operations that you can put together using

the numbers code blocks previously discussed in this chapter, Scratch provides

one additional multi purpose code block, as shown in Figure 8.8.

This code block is designed to perform any of 12 different mathematical func-

tions, which can be selected from the code block’s drop-down list. The functions

that this code block can perform are outlined in the following list:

n abs. Returns the absolute, non-negative value of a number.

n sqrt. Returns the square root of a number.

n sin. Returns a value representing the sine of an angle.

n cos. Returns a value representing the cosine of an angle.

n tan. Returns a value representing the tangent of an angle.

n asin. Returns the arc sine for the specified numeric value.

n acos. Returns the arc cosine for the specified numeric value.

n atan. Returns the arc tangent for the specific numeric value.

n ln. Returns the inverse of the natural exponent of a specified value (i.e., the

opposite of e^).

n log. Returns the natural log of a number.

168 Chapter 8 n Doing a Little Math

Figure 8.8
This code block can assist you in setting up extremely complex calculations.

n e^. Returns the natural exponent of a specified value.

n 10^. Returns the value of a number raised to the 10th power.

These code blocks can be real time savers when developing applications that

require the use of any of the mathematical functions supported by the code

block, saving you the trouble of implementing the underlying programming

logic yourself to retrieve similar results. As a result, not only will you spend less

time working on the development of your application, but the programming

logic that you have to develop will be simplified and easier to maintain, since this

code block can do most of the heavy lifting for you.

To specify which function you want to work with, all you have to do is select it

from the code block’s drop-down list. For example, the following examples

demonstrate the use of two different functions provided by this code block:

This example consists of two sets of code blocks. The first set of code blocks

returns the absolute value of –4.4, which is 4.4, and assigns that value to a variable

named Result. The second set of blocks returns the square root of 9, which is 3,

and assigns that value to a variable named Result.

Developing the Number Guessing Game Quiz Project
The remainder of this chapter is focused on the development of your next Scratch

application, the Number Guessing game. This application will make use of

numbers code blocks to generate random numbers for the player to guess and to

compare the player’s guesses against the game’s randomly generated number.

In total, the application is made up of a background, 11 sprites, and 12 scripts.

When run, the game will challenge the player to guess a randomly generated

number in the range of 0 to 9 in as few guesses as possible. Figure 8.9 shows an

example of how the game looks when first started.

To enter a guess, the player must click on one of the button sprites located at the

bottom of the stage. The cat provides immediate feedback after each guess, as

demonstrated in Figure 8.10.

Developing the Number Guessing Game Quiz Project 169

Figure 8.11 shows how the game looks once the player finally manages to guess

the game’s secret random number.

The game automatically generates a new random number at the end of each

game, in order to ready the game to be played again. The development of

170 Chapter 8 n Doing a Little Math

Figure 8.9
The Number Guessing game is moderated by the Cat sprite.

Figure 8.10
The cat lets the player know when guesses are too high or too low.

Figure 8.11
The player guessed the secret number in five guesses.

this application project will be created by following a series of steps, as outlined

here:

1. Creating a new Scratch application project.

2. Adding a background to the stage.

3. Adding and removing sprites.

4. Adding variables needed by the application.

5. Adding an audio file to the application.

6. Adding scripts to each button to collect player guesses.

7. Adding the programming logic required to process player guesses.

8. Saving and executing your work.

Step 1: Creating a New Scratch Project

The first step in the development of the Number Guessing game is to create a new

Scratch application project. To do so, start Scratch, automatically creating a new

Scratch project or, if Scratch is already running, click on the New button located

on the Scratch menu bar.

Step 2: Adding a Stage Background

The next step in the development of the Number Guessing game is to add a

background to the stage. To do so, click on the blank stage thumbnail located in

the sprite list and then change its background by clicking on the Backgrounds tab

located at the top of the scripts area. Next, click on the Import button and when

the Import Background window opens, click on the Outdoors folder. Then select

the brick-wall1 thumbnail and click on the OK button. Since the application

only needs one background, remove the default blank background, named

background1, from your project by clicking on the Delete This Costume button.

Step 3: Adding and Removing Sprites

The Number Guessing game is comprised of the default Cat sprite plus 10 button

sprites and a variable monitor, as shown in Figure 8.12.

Developing the Number Guessing Game Quiz Project 171

To add the first of the sprites representing the 10 input buttons, click on the

Choose New Sprite from File button to open the New Sprite window. Drill down

in to the Letters folder and then the Keys folder to select the 0 sprite. Then click

on the OK button. Place the sprite in the lower-left corner of the stage, as shown

in Figure 8.12. Following this same process, add sprites 1 through 9 to the bottom

of the stage as well. At this point, all that is left in the design of the application’s

user interface is the display and repositioning of the monitor, which you will do

in the next step.

Step 4: Adding Variables Required by the Application

In order to execute, the Number Guessing game requires three variables, as

shown in Figure 8.13. To add these variables to the application, click on the

172 Chapter 8 n Doing a Little Math

Figure 8.12
An overview of the different parts of the Number Guessing game.

Figure 8.13
The Number Guessing game requires three variables.

Variables button located at the top of the blocks palette and then click on the

Make a Variable button three times to define variables named Guess, No Of

Guesses, and RandomNo.

The variable named Guess will be used to store the most recent guess made by the

player. The variable named No Of Guesses will be used to keep track of the number

of guesses made by the player during each game. The variable named RandomNo will

be used to store the game’s randomly generated secret number. Once added, clear

the check box controls belonging to the Guess and No Of Guesses variables to

prevent their monitors from being displayed. Lastly, drag and drop themonitor for

the No Of Guesses variable to the middle right-hand side of the stage.

Step 5: Adding an Audio File to the Application

The Number Guessing gamemakes use of two audio files that are played as sound

effects when the player makes incorrect and correct guesses. The audio file played

when the player enters a missed guess is the default pop file, which is auto-

matically included as part of each of the button sprites used in the application.

The second audio file is the Fairydust file, which is played whenever the player

manages to correctly guess the mystery number.

To add the Fairydust audio file, select the Cat sprite thumbnail in the sprite list

and then click on the Sounds tab located at the top of the scripts area. Next, click

on the Import button to display the Import Sound window, and then double-

click on the Electronic folder, select the Fairydust file, and click on OK.

Step 6: Adding Scripts to Capture Player Input

The programming logic that drives the Number Guessing application is divided

into a series of scripts belonging to the application’s sprites. Specifically, small

scripts must be added to each of the button sprites to capture and save player

guesses. In addition, two scripts must be added to the Cat sprite. These two

scripts, which are responsible for starting the game and processing player guesses,

will be covered in Step 7.

To begin work on each of the scripts belonging to the button sprites, select the

sprite representing the 0 button and then add the following code blocks to it:

Developing the Number Guessing Game Quiz Project 173

The script begins with a hat block that executes whenever the sprite is clicked

(when the player clicks on it as a guess). When this occurs, the second code block

in the script sends a Player has guessed broadcast message to the other sprites as

a signal that the player has submitted a guess. The Player has guessed must be

typed into the control block exactly as shown. A third code block is then used to

assign a value to the Guess variable, recording the player’s guess. Note that in this

example, setting Guess to 0 indicates that the player has submitted a guess of 0.

The last code block in the script plays the default pop audio file, which lets the

player know that the guess has been processed.

No t e

A broadcast message is a message exchanged between sprites that signals when an event of
some type has occurred within an application. Broadcast messages are generated by and received
using various control code blocks, which you will learn all about in Chapter 10, ‘‘Changing the Way
Sprites Look and Behave.’’ For now, all you need to know is that this application uses broadcast
messages in order to coordinate activity and keep track of what is occurring within the game.

The scripts that need to be added to the rest of the button sprites are almost

identical to the script that you just added. The only difference is that you need to

modify the value that is set in the third code block to properly reflect which

button sprite each script belongs to. The easiest way to add these scripts to the

other nine button sprites is to drag and drop an instance of the first script onto

each of the nine other sprites and then to select each sprite, one at a time, and

modify the value of the third code block accordingly.

Step 7: Processing Player Guesses

Once scripts have been added to all 10 of the button sprites, it is time to create the

two scripts belonging to the Cat sprite. The first of these scripts is shown next and

is responsible for initializing the game and getting it ready to play.

This script is executed when the player clicks on the green flag button. It begins

by assigning an initial value of 0 to No Of Guesses and then assigns a randomly

generated value in the range of 0 to 9 to a variable named RandomNo. Lastly, it

174 Chapter 8 n Doing a Little Math

displays a pair of messages that inform the player that the cat is thinking of a

number and challenges the player to try to guess it.

The second and final script to be added to the Cat sprite is shown next. This script

is automatically executed whenever the Player has guessed broadcast message is

received. This happens when the player clicks on one of the 10 button sprites.

First, the script modifies the value assigned to No Of Guesses by increasing it by 1.

This allows the application to keep track of the number of guesses that the player

has made in the current game.

The rest of the script is made up of code blocks embedded within a control block.

The control block begins by evaluating the value assigned to the Guess variable to

see if it is equal to the value assigned to the RandomNo variable. If this is the case, a

series of code blocks embedded within the upper portion of the control block are

executed. If this is not the case, code blocks embedded in the bottom of the

control block are executed.

The code statements located in the upper half of the control block, which execute

when the player enters a correct guess, perform the following actions:

n Play the Fairydust audio file that was added to the Cat sprite back in Step 5

n Notify the player that the game has been won

n Pause script execution for one second

n Reset the value of No Of Guesses to 0

Developing the Number Guessing Game Quiz Project 175

n Select a new random number for the game

n Challenge the player to play again

If, on the other hand, the player enters an incorrect guess, the code blocks

embedded at the bottom of the script are executed. These code blocks are

organized into two separate control blocks. The first control block evaluates the

value assigned to Guess to see if it is less than RandomNo, and if it is, a message is

displayed that informs the player that the guess was too low. The second control

block determines if the value assigned to Guess is less than RandomNo, and if it is, a

message is displayed that informs the player that the guess was too high.

Step 8: Saving and Executing Your New Scratch
Application

At this point, you now have all the information that you need to create your own

copy of the Number Guessing game. If you have not already done so, save your

new Scratch project. Once saved, switch to Presentationmode, run the game, and

put it through its paces. Remember to begin game play by clicking on the green

flag button and following the instructions provided by the Cat sprite.

Summary
This chapter provided a thorough overview of Scratch numbers code blocks and

demonstrated their usage. This included learning how to perform mathematical

calculations and generate random numbers, as well as how to perform numeric

comparisons. You learned how to perform different types of logical comparisons

and to combine code blocks that execute logical and comparison operations to

carry out advanced comparison operations. On top of all this, you learned how to

perform a host of advanced mathematical operations like rounding numbers and

executing different arithmetic functions. You also learned how to create another

Scratch application, the Number Guessing game.

176 Chapter 8 n Doing a Little Math

Conditional and
Repetitive Logic

To create a script, you must know how to work with control code blocks. All of

Scratch’s hat blocks are control blocks. Control blocks also provide the capability

to implement loops and conditional programming logic, which are the building

blocks of advanced and complex applications. Control blocks can pause and halt

script execution. Control blocks also provide the capability to send and receive

broadcast messages, providing you with a means of coordinating application

activity.

The major topics covered in this chapter include:

n How to use control blocks to initiate script execution

n How to pause and halt script execution

n How to set up different types of loops and implement conditional

programming logic

n How to send and receive broadcast messages between sprites

Introducing Scratch Control Blocks
Scratch control blocks provide programmers with many different capabilities, all

of which are geared around controlling script execution. Without control blocks,

scripts would not be able to execute. Nor would they be able to pause, loop, or

177

chapter 9

execute conditional logic when evaluating data. Through control blocks, Scratch

can perform all of the actions listed here:

n Event programming

n Pause script execution

n Create loops

n Send and receive broadcast messages

n Execute conditional logic

n Halt script execution

You have already seen control blocks in action in every script presented in the first

eight chapters of this book. Now it is time to learn more about these powerful code

blocks and the programming features they provide.

Event Programming
Control blocks can initiate script execution, which is critical to the execution of

Scratch applications. This is accomplished with hat blocks, including those

shown in Figure 9.1.

As you have seen in many examples in this book, the first code block shown in

Figure 9.1 initiates a script’s execution whenever the green flag button is clicked,

and it is the most common means of starting an application’s execution. For

example, if you were to add the following script to any sprite or background in a

Scratch application, it would automatically play a specified audio file (provided

that file has been imported).

178 Chapter 9 n Conditional and Repetitive Logic

Figure 9.1
Hat blocks automate the execution of scripts.

The second code block shown in Figure 9.1 initiates a script’s execution whenever

a specified keyboard key is pressed. The key that is used as the trigger is selected

by clicking on the code block’s drop-down list and making a selection of one of

the following keystrokes:

n Up, down, right, and left arrow keys

n The spacebar

n a – z

n 0 – 9

For example, the following script demonstrates how to move a sprite by 50 steps

whenever the keyboard’s spacebar is pressed:

The third code block shown in Figure 9.1 initiates script execution whenever the

sprite to which it belongs is clicked. The following script demonstrates how to use

this code block to automate the display of text in a speech bubble whenever

the sprite to which it has been added is clicked:

No t e

Scratch provides a fourth hat control block, which is covered later in this chapter. This code block
is used to initiate script execution when broadcast messages are received.

Pausing Script Execution
Once started, scripts execute without pause until they are done. However,

sometimes you need to temporarily pause a script’s execution for a specified

period. The code block that you need to use in this type of situation is shown in

Figure 9.2.

Pausing Script Execution 179

Figure 9.2
Using this control block, you can pause script execution for as long as necessary.

This code block adds brief pauses to your Scratch applications. For example, you

might want to pause a script’s execution for a second or two after the player

scores a point. This brief pause would allow the player a moment to review the

score and to get ready for the next point. Another reason for pausing a script’s

execution is to help manage the playback of audio files, as demonstrated in the

following example:

Here, you see a script that plays two audio files. In order to allow the first audio

file time to play back, the script is paused for two seconds, after which execution

resumes, and the second audio file is played. If you were to remove the control

block that pauses the script from this example, both audio files would play

simultaneously, interfering with one another.

T i p

It you want to continuously play an audio file without pausing a script’s execution, consider
putting the code statements that are responsible for audio file playback in their own script and
adding that script to the stage.

No t e

The control block shown in Figure 9.3 also pauses script execution, waiting until a specified
condition becomes true. This code block is covered a little later in this chapter, when conditional
programming logic is discussed.

Executing Loops
Most computer applications and games are interactive, meaning that they

respond to user input and react accordingly. In doing so, it is often necessary to

execute collections of code statements repeatedly. For example, an arcade-style

computer game might require the continuous playback of background music

and sound effects. This would require the repeated execution of programming

180 Chapter 9 n Conditional and Repetitive Logic

Figure 9.3
This code block provides another way of conditionally pausing script execution.

logic required to manage sound playback for as long as the game was played. To

manage this type of interaction, you need to add loops to your applications. In

Scratch, a loop is a collection of one or more code blocks embedded with a

control block that are repeatedly executed.

Without loops, programmers would have to create extremely large scripts filled

with repeated series of duplicate statements to perform certain tasks. For ex-

ample, to create a Scratch application that bounces the Cat sprite up and down

four times without a loop, would you have to add a script like the one shown next

to the sprite.

The script begins by positioning the sprite at the bottom center of the stage. Two

sets of motion blocks are needed to bounce the sprite one time. So to bounce the

sprite up and down four times, these two code block have to be repeated four

times. Suppose you wanted to make the sprite bounce 10, 100, or 1,000 times.

Clearly, this is a situation where a loop is needed.

Scratch supplies access to two code blocks that you can use to set up loops, as

shown in Figure 9.4.

No t e

Scratch also supplies two additional control blocks that offer the capability to conditionally
execute loops. These two code blocks will be discussed a little later in this chapter when
conditional logic is covered.

Executing Loops 181

Figure 9.4
Using these code blocks, you can create loops that repeat the execution of any code blocks you
embedded within them.

The first of the two code blocks shown in Figure 9.4 can be set up as a loop that

executes forever, which really means that the loop repeatedly executes until the

script in which it resides is halted. For example, the following script uses this code

block to set up a loop that bounces a sprite over and over again, until the Stop

Everything button is clicked:

The first statement moves the sprite to the bottom center of the stage. The two

statements within the loop bounce the sprite, in a gliding motion, up and down

from the bottom to the middle of the stage.

No t e

In Scratch, there are two ways to force an immediate termination of a script. First, you can halt a
script by stopping the execution of the application by clicking on the red Stop Everything button.
However, this option can often be a bit of overkill. As a less extreme option, Scratch offers a
control block that allows you to halt an individual script’s execution. There is also a control block
that you can use to halt the execution of all scripts within an application. Both of these control
blocks are reviewed a little later in this chapter.

Rather than repeating the execution of a loop forever, you can use the second

code block shown in Figure 9.4 to set up a loop that executes a predetermined

number of times. For example, the following script demonstrates how to bounce

a sprite up and down a total of 10 times.

Obviously, the fewer code blocks you use when developing scripts, the more

streamlined and easier to support your applications will be. Loops make pro-

gramming a lot easier and provide a tool that you can use to repeat the execution

of any number of code statements with as little fuss as possible.

182 Chapter 9 n Conditional and Repetitive Logic

Sending and Receiving Broadcasts 183

Sending and Receiving Broadcasts
Because Scratch applications can be made up of many different sprites, each of

which may consist of many different scripts, coordinating the activity of all the

different parts of the application can be challenging. By providing access to the

three code blocks shown in Figure 9.5, Scratch offers the ability to send and

receive broadcast messages as a means of coordinating script execution.

Using the first two code blocks shown in Figure 9.5, you can pass messages to any

script within an application that begins with the hat code block shown at the

bottom of Figure 9.5. For example, the following script demonstrates how to

send a broadcast message of jump to all sprites within the application:

To specify the message sent by the control code block, all you have to do is click on

the block’s drop-down list and then either select a previously typed message or

create a new message by clicking on New and then typing in the message. This

particular code block sends its message and then allows the script in which it is

embedded to continue executing. Alternatively, the following script not only sends

a broadcast message but also waits until every script in the application, which has

been set up to execute when the message is sent, has finished executing:

Using the hat block, you can set up a script to execute whenever a specified

message is received.

Figure 9.5
Broadcast messages provide the capability for one script to notify other scripts that an event has occurred.

184 Chapter 9 n Conditional and Repetitive Logic

No t e

Using the three previous scripts, you could create a new application made up of two button
controls and the default Cat sprite. By assigning the first script to the first button sprite, the
second script to the second button sprite, and the third script to the Cat sprite, you can make the
Cat sprite jump up and down on the stage any time you click on one of the button sprites.

Conditional Programming Logic
The next set of control code blocks provided by Scratch is shown in Figure 9.6. These

code blocks allow you to apply conditional programming logic to your scripts.

Using these code blocks, you can analyze data within your applications and make

decisions based on this analysis, resulting in the conditional execution of collec-

tions of code blocks. The key concept to understand whenworkingwith these types

of code blocks is that conditional logic involves an evaluation as to whether a

condition is true or not. If the condition being analyzed is true, then the code

blocks embedded within the control block are executed. However, if the condition

being analyzed proves false, the embedded code blocks are not executed.

The following script demonstrates how to use the first code block shown in

Figure 9.6 to set up a loop in which execution is controlled by a conditional test.

Each time the loop repeats, it checks the value assigned to a variable named

Counter to see if it is equal to 0. If it is, the loop executes, plays an audio file,

pauses for two seconds, and then checks to see if it should execute again.

Figure 9.6
These five code blocks let you conditionally execute collections of code blocks.

This next example demonstrates how to conditionally execute the playback of an

audio file. When executed, this script examines the value assigned to a variable

named Counter to see if it is equal to 0, and if it is, the audio file is played.

Sometimes you may want to execute either of two sets of code blocks based on

the results of a tested condition. This can be accomplished using the third code

block shown in Figure 9.6.

Here, a conditional test is performed that checks to see if the direction that a

sprite is facing is 90 degrees. If it is, the direction that the sprite is pointing is

reversed. If you run the script repeatedly, the direction that the sprite is pointing

is continuously reversed.

This next example demonstrates how to use a control block that pauses script

execution and waits for a specified condition to become true.

Here, a script has been set up that, once run, checks on the value assigned to

Counter to see if it is greater than 5. If it is, an audio file is played. If Counter is not

greater than 5, then the script pauses its execution, waiting until the value of

Counter exceeds 5 before finishing its execution.

Finally, the last example demonstrates how to work with the last of the control

blocks shown in Figure 9.6. Here, a loop is set up to execute repeatedly until the

value assigned to Counter is set equal to 3, at which time the loops will stop

running. Each time the loop runs, it moves, or bounces, its associated sprite up

and down on the stage.

Conditional Programming Logic 185

Nesting Conditional Control Code Blocks

As powerful as the control blocks are that facilitate conditional execution, they

are limited to analyzing a single condition at a time. To develop more complex

programming logic, you can embed one control block within another, as

demonstrated in the following example:

Here, one control block has been embedded within another control block to

further analyze the value assigned to Counter. If necessary, you can embed

control blocks many levels deep. However, the deeper you go, the more difficult

your scripts will be to understand and maintain.

Preventing Endless Loops

Loops are extremely powerful tools, providing the capability to perform repe-

titive tasks with ease. However, if you are not careful when setting them up, you

can accidentally set up an endless loop. An endless loop is a loop that, because of a

logical error on the programmer’s part, never ends. For example, you might want

to set up a loop that plays an audio file five times. But suppose when setting up

the loop you made a mistake that prevented the loop from ever terminating, as

shown here.

Here, the intention was to set up a loop that would execute five times. The

loop has been set up to execute for as long as the value assigned to Counter is

186 Chapter 9 n Conditional and Repetitive Logic

less than 5. Counter is assigned an initial value of 1, and its value is supposed to be

incremented by 1 each time the loop executes. However, instead of incrementing

the value of Counter by 1 at the end of the loop, the value of Counter is decremented

by a value of �1. As a result, the loop never terminates, forever repeating the

playback of the audio file. To prevent endless loops from occurring, you need to

take extra care when setting up loops and test your scripts thoroughly when

developing your applications.

Terminating Script Execution
The last two control blocks offered by Scratch are shown in Figure 9.7. These

code blocks programmatically halt script execution within your Scratch

applications.

Using the first of these two control blocks, you can halt the execution of the

scripts in which the code block is placed, as demonstrated in the following

example:

Here, the script checks to see if the value assigned to a variable named Counter is

equal to 3, and if it is, an audio file is played. If Counter is not equal to 3, then a

different audio file is played, and the script’s execution is halted. Halting a script

this way forces its immediate termination, even if the script contains additional

code blocks that have not been executed.

Using the second control block shown in Figure 9.7, you can not only halt the

execution of the current script, but you can also halt the execution of every

script in the application. For example, the following script executes a loop three

times and then halts the execution of every script in the application in which it

resides.

Terminating Script Execution 187

Figure 9.7
Using these code blocks, you can halt the execution of any or all scripts within an application.

Developing the Ball Chase Game
The rest of this chapter is dedicated to teaching you how to create your next

Scratch application, the Ball Chase game. This application makes heavy use of

different control blocks to control the movement of the ball and the cat that

chases it around the stage. In total, the application is made up of four sprites and

nine scripts. The object of the game is to try to prevent the cat from catching the

ball as it chases it around the stage. If you can keep the ball out of the cat’s reach

for 30 seconds, you win. Figure 9.8 shows how the game looks when first started.

To play, all you have to do is move the mouse-pointer around the stage, and

the ball will automatically follow. If the cat manages to catch the ball before

30 seconds is up, the game ends, as demonstrated in Figure 9.9.

188 Chapter 9 n Conditional and Repetitive Logic

Figure 9.8
The object of the game is to prevent the cat from catching the ball.

Figure 9.9
The game ends if the cat catches the ball.

Figure 9.10 shows how the game looks when the player successfully manages to

evade the cat for the entire 30 seconds.

The development of this application will be accomplished by following a series of

steps, as outlined here:

1. Creating a new Scratch project.

2. Adding and removing sprites.

3. Adding variables needed by the application.

4. Adding an audio file to the application.

5. Adding a script to control ball movement.

6. Adding scripts that display game over messages.

7. Adding the scripts required to control and coordinate game play.

8. Saving and executing your work.

Step 1: Creating a New Scratch Project

The first step in the development of the Ball Chase game is to create a new Scratch

project. To do so, start Scratch, automatically creating a new Scratch project, or if

Scratch is already running, click on the New button located on the Scratch menu

bar.

Step 2: Adding and Removing Sprites

The Ball Chase game is made up of the default Cat sprite plus three other sprites

and a variable monitor, as shown in Figure 9.11.

Developing the Ball Chase Game 189

Figure 9.10
The player wins if the ball can be kept away from the cat for 30 seconds.

Since the default Cat sprite is not needed in this application, go ahead and

remove it. In its place you need to add a different sprite, representing a top-down

view of a different Cat sprite. To add this sprite, click on the Choose New Sprite

from File button. When the New Sprite window opens, drill down in to the

Animals folder and then select the cat2 sprite and click on the OK button. By

default, the sprite is placed in the middle of the stage and faces in a 90-degree

direction. Leave this sprite in its default location in the middle of the stage,

change its direction to 0, and then change its assigned name to Cat. Next, add the

Ball sprite by clicking on the Choose New Sprite from File button, drilling down

in to the Things folder, selecting the beachball1 sprite, and then clicking on the

OK button. Place the Ball sprite on the top center of the stage and change its

assigned named to Ball.

To add the application’s remaining two sprites, which will be nothing more than

text strings saved as sprites, you must create them, which you can do using

Scratch’s built-in Paint Editor program. Both of these sprites consist of text

messages. For the first of these two sprites, open the Paint Editor by clicking on

the Paint New Sprite button. When the Paint Editor program opens, specify a

font type of ComicSans, a font color of red, and a font size of 18. TypeGame Over,

press the Enter key, type You lose! into the Paint Editor, and then click on the

OK button. Using this same process, create a second sprite that says Game Over!

You win. Change the names assigned to these two sprites to LosingMsg and

WinningMsg, respectively.

190 Chapter 9 n Conditional and Repetitive Logic

Figure 9.11
An overview of the different parts of the Ball Chase game.

Step 3: Adding Variables Required by the Application

To execute, the Ball Chase game requires one variable as shown in Figure 9.12. To

add this variable to the application, click on the Variables button located at the

top of the blocks palette and then click on the Make a Variable button to define a

variable named Elapsed Time.

This variable will be used to display the amount of time remaining in the game.

Make sure that you leave the check box for this variable selected and that you

reposition the variable’s corresponding monitor to the upper right-hand corner

of the stage.

Step 4: Adding an Audio File to the Application

The Ball Chase game makes use of one sound effect, which simulates the meowing

of the cat as its chases the ball around the stage. To add this audio file, select the Cat

sprite thumbnail in the sprite list and then click on the Sounds tab located at the

top of the scripts area. Next, click on the Import button to display the Import

Sound window, double-click on the Animal folder, select the Meow audio file, and

finally click on the OK button to finish adding the audio file to the sprite.

Step 5: Adding a Script to Control Ball Movement

The objective of the game is to try to keep the ball out of the reach of the cat for

30 seconds. The following script, which should be added to the Ball sprite, is

responsible for controlling the movement of the ball on the stage.

This script begins with a hat block. Next, a motion block is used to position the

ball in the upper middle portion of the stage. A looks block is then used to move

Developing the Ball Chase Game 191

Figure 9.12
The Ball Chase game requires one variable.

the sprite back one layer, ensuring that if the Ball sprite encounters the Cat

sprite, the Ball sprite will be displayed under the Cat sprite instead of on top of it.

(You will learn about looks blocks in Chapter 10, ‘‘Changing the Way Sprites

Look and Behave.’’)

The rest of the script consists of a loop that repeatedly executes another motion

block. The motion block is responsible for moving the Ball sprite around the

stage to where the mouse-pointer is.

Step 6: Adding Scripts That Display Game Over Messages

You will add the script that is responsible for making the cat chase the ball

around the stage in the next section. Before doing so, add the following pair of

scripts to the WinningMsg sprite. These scripts are responsible for displaying and

hiding the game’s winning message.

The first of the two scripts shown above is responsible for hiding the display of

the sprite to which it has been added. The second script, on the other hand, is

responsible for displaying the sprite whenever a broadcast message of You win is

received. Note that this script includes a looks block that pushes the sprite to the

front of any other sprites that it may happen to overlap. This ensures that the

message is completely visible once displayed.

Once you have created and added these two scripts to the WinningMsg sprite, drag

and drop both of them onto the LosingMsg sprite and then edit the second script

so that it executes whenever a broadcast message of You lose is received.

Step 7: Adding Scripts Needed to Control
and Coordinate Game Play

To wrap up your work on the Ball Chase game, you need to add four scripts to

the Cat sprite. The first of these scripts is shown next and is responsible for

ensuring the cat chases the ball around the stage.

192 Chapter 9 n Conditional and Repetitive Logic

This script begins by moving the Cat sprite to the center of the stage and

pointing it in its default upward direction. Next, it pauses for one second

and then enters into a loop, which repeatedly executes the embedded code

blocks. The first of these three code blocks points the cat sprite towards the Ball

sprite. The second code block pauses the loop’s execution for .15 seconds,

after which the third block moves the Cat sprite 66 steps in the direction of the

Ball sprite.

No t e

The reason for imposing the .15 second delay in the script’s loop is to slow down things
enough to give the player a chance to keep the ball from the cat. If the little extra delay were
removed from the loop, the speed at which the cat moves would easily overcome even the
fastest player.

The second of the four scripts to be added to the Cat sprite is shown next. This

script is set to execute when the player starts the game by clicking on the green

flag button. The script begins by setting the value at which the audio is played

to 50% of the level of the computer’s current sound level. The rest of the script is

controlled by a loop that repeatedly runs two embedded code blocks. The first

code block pauses script execution for five seconds. The second code block plays

the Meow audio file. The result is that the cat will meow every five seconds as it

chases the ball around the stage.

The third script to be added to the Cat sprite is responsible for halting the

execution of all scripts in the application in the event that the cat manages to

touch the sprite during game play. The code blocks that make up this script are

shown here:

Developing the Ball Chase Game 193

This script is executed when the player starts the game by clicking on the green

flag button. The script’s overall execution is controlled by a loop. Within the

loop, a conditional test is performed that checks to see if the Cat sprite has made

contact with the Ball sprite. If this is the case, a broadcast message of You lose is

sent. Once this message has been received and processed by the other scripts in

the application, the last code block in the loop is executed, halting all script

execution.

The last script to be added to the Cat sprite is shown next. This script is res-

ponsible for keeping track of time as the application executes and for halting

game play after 30 seconds, should the player manage to keep the cat at bay for

that long.

When started, this script begins by resetting Scratch’s internal timer and then

assigning the current value of the timer (0.0) to a variable named Elapsed Time.

The rest of the script is controlled by a loop. Each time the loop executes, it

updates the value assigned to the Elapsed Time variable to reflect the timer’s

current value. Next, a check is made to see if the timer’s value has exceeded

30 seconds, and if it has, a broadcast message of You win is sent. Once processed

by the other scripts in the application, the execution of all scripts in the appli-

cation is halted. If, on the other hand, the timer’s value is less than 30 seconds, the

loop simply executes again. Accordingly, if the cat does not manage to catch

the ball within 30 seconds, thus ending the game, the fourth script will end the

game and declare the player to be the winner.

194 Chapter 9 n Conditional and Repetitive Logic

Step 8: Saving and Executing Your Scratch Project

All right! Assuming you have followed along closely with each of the steps

presented in this chapter, your copy of the Ball Chase game should be ready for

testing. If you have not done so yet, save your new Scratch project. Once saved,

switch over to Presentation mode and execute the game. Remember that game

play begins when you click on the green flag button and that your object is to

keep the ball out of the cat’s reach for 30 seconds.

Summary
This chapter provided an overview of all of Scratch’s control blocks. You learned

how to use Scratch hat blocks and to pause and halt script execution. This

chapter also showed you how to set up different types of loops and to work with

all five of Scratch’s control blocks that support conditional programming logic.

You also learned how to control and coordinate script activity by sending and

receiving broadcast messages between sprites.

Summary 195

This page intentionally left blank

Changing the Way Sprites
Look and Behave

By its very nature, Scratch lends itself to the development of graphical applica-

tions that involve the manipulation of sprites. This includes taking actions that

affect the appearance and behavior of both sprites and the stage background.

Sprite and background appearance and behavior can be controlled using looks

code blocks. Looks code blocks can be used to affect sprite appearance through

the application of special effects, to make sprites visible or invisible as applica-

tions execute, and even to change sprite costumes and stage backgrounds. This

chapter offers an in-depth overview of all of Scratch’s looks code blocks and

will guide you through the creation of your next Scratch project, the Crazy Eight

Ball game.

The major topics covered in this chapter include:

n Learning how to programmatically change a sprite’s costume

n Learning how to display text in speech and thought bubbles

n Discovering how to apply a range of special graphical effects to sprites

n Learning how to change a sprite’s size

n Making sprites appear and disappear during application execution

n Specifying how sprites that overlap one another should be displayed

197

chapter 10

Changing Sprite Costumes and Backgrounds
Depending on whether you have selected a sprite’s thumbnail or the stage

thumbnail in the sprite list, several different code blocks are displayed when you

look at Scratch’s looks blocks in the blocks palette. For starters, the first three

code blocks are different, as shown in Figure 10.1.

Both sets of code blocks have similar tasks, with one set focusing on working with

sprite costumes while the other set is focused on working with the stage’s

background.

Changing Sprite Costumes

Every sprite that is added to a Scratch application is capable of changing its

appearance by changing its costume. Sprites can be assigned any number of

costumes and switch between them at any time. To add a costume to a sprite, all

you have to do is select the sprite’s thumbnail, click on the Costumes tab located

at the top of the scripts area, and then click on the Import button. This opens a

window that allows you to locate and select a graphic file to be used as a new

costume for the sprite.

Every costume that is added to a sprite is automatically assigned a number and a

name (based on the graphic’s filename). The first costume in the costume list

represents the sprite when the application is started. However, using drag and

drop, you can rearrange the order in which costumes are listed. In addition, using

the first looks block shown in Figure 10.1, you can programmatically replace a

sprite’s current costume by specifying the name of a different costume. For

example, the following script demonstrates how to use this code block in a loop

to repeatedly change a sprite’s costume 10 times at half-second intervals. The

result is the generation of animation that makes it look like the bat is flying.

198 Chapter 10 n Changing the Way Sprites Look and Behave

Figure 10.1
The code blocks on the left are displayed when you are working with a sprite, and the code blocks on
the right are displayed when you are working with the stage.

To change the costume of the sprite to which this script is added, select the

costume’s name from the looks block’s drop-down list. The block’s drop-down

list is automatically populated with a list of all of the costumes that have been

added to the sprite. The costumes listed in the previous example refer to two

costumes representing different views of a bat, as shown in Figure 10.2, and are

supplied as part of a collection of graphic files that ships with Scratch.

Costume numbers are automatically assigned by Scratch as you import new

costumes into a sprite. The first costume assigned to a sprite is given a costume

number of 1. Each successive costume is assigned a higher number, as demon-

strated in Figure 10.3.

Using the second looks block shown on the left-hand side of Figure 10.1, you can

change a sprite’s costume to the next costume in the costume list. For example,

the following script automatically changes a sprite’s costume whenever the sprite

is clicked.

When executed, the script changes the sprite’s costume to the next costume in

the list. By clicking on the sprite repeatedly, you continue changing the sprite’s

Changing Sprite Costumes and Backgrounds 199

Figure 10.2
Bat costumes.

costume. Once the last costume in the costume list has been displayed, Scratch will go

back to the top of the costume list and start over, as depicted in Figure 10.4.

The last looks block shown at bottom left of Figure 10.1 can be used to display a

monitor that presents a sprite costume number on the stage. Alternatively, you

can use this code block as input to any code block that accepts numeric input.

Changing a Stage’s Background Costumes

The looks code blocks on the right-hand side of Figure 10.1 are used to change

the stage’s background and work identically to their counterparts that deal with

200 Chapter 10 n Changing the Way Sprites Look and Behave

Costume # 1

Costume # 2

Costume # 3

Figure 10.3
Three costumes have been added to a sprite, each of which depicts a slightly different version of a blue
dog. These costumes are numbered 1, 2, and 3 and are named dog2-a, dog2-b, and dog2-c, respectively.

Figure 10.4
Scratch loops back to the beginning of the sprite’s costume list as necessary to fulfill additional
costume switches.

costumes. For example, the following script demonstrates how to randomly set

the stage’s background to one of three options.

Note that in addition to changing the stage’s background twice, this example also

plays one of three audio files, depending on which of the three backgrounds is

randomly selected.

Making Sprites Talk and Think
The following set of looks code blocks, shown in Figure 10.5, is applicable only

to sprites and can used to display text in speech and thought bubbles, making a

sprite look like it is talking or thinking.

Figure 10.6 provides examples of how speech and thought bubbles look.

The first two code blocks are used to display text in speech bubbles. The dif-

ference between these two code blocks is that the first code block displays its text

Making Sprites Talk and Think 201

Figure 10.5
Using these code blocks, you can display text in both speech and thought bubbles.

Figure 10.6
Speech and thought bubbles resemble callouts used to display captions in cartoons found in many
popular newspaper comic strips.

for a specified number of seconds, and the second code block permanently

displays its text (until the text is overridden by another speech or thought

bubble). For example, the following script could be used to display the text

Hello! for two seconds in a speech bubble.

T i p

Any text displayed using the second and fourth code blocks shown in Figure 10.5 do not
automatically go away. However, you can clear out the text displayed in a speech or thought
bubble by executing a speech or thought code block with no text typed in it.

Similarly, the following script demonstrates how to display a text message of

Hmm. . . in a thought bubble.

Applying Special Effects to Costumes and Backgrounds
The next three looks code blocks, shown in Figure 10.7, apply to both sprites and

the stage and can be used to apply and clear different graphical special effects.

The first and second code blocks shown in Figure 10.7 select and then apply one

of the following special effects to a sprite’s costume or to the stage’s background.

n Color. Modifies the costume or background’s color.

n Fisheye. Magnifies a portion of a costume or background.

n Whirl. Twists and distorts a portion of a costume or background.

202 Chapter 10 n Changing the Way Sprites Look and Behave

Figure 10.7
These code blocks allow you to set and clear different graphics effects on sprites.

n Pixelate. Displays a sprite or background at a lower resolution than the

resolution at which the image was created.

n Mosaic. Creates an image made up of repeated instances of a sprite or

background.

n Brightness. Modifies an image by increasing or decreasing its intensity of

light.

n Ghost. Fades the appearance of a costume or background to make it look

transparent.

An example of each of these graphic effects on a sprite is shown in Figure 10.8.

To develop a better understanding of how to work with these two code blocks,

let’s look at a couple of examples. In this first example, a sprite’s appearance is

changed by executing a loop four times. Each time the loop executes, it applies

the ghost effect to the sprite to which it belongs.

Note that the value specified in the input field for the code block in the previous

script is 25, which represents a percentage value. As such, for each of the four

times that the loop repeats, the sprite fades away until at the end of the last

execution of the loop, the sprite completely disappears.

Applying Special Effects to Costumes and Backgrounds 203

Figure 10.8
A demonstration of how special effects affect a sprite.

This second example applies the whirl special effect to its sprite. Specifically, it

begins by clearing any previous whirl effect that may have been applied to the

sprite. Then, over a period of four seconds, it slowly modifies the appearance of

the sprite by applying an increased application of the whirl effect. A one-second

pause then ensues, and the sprite is returned to its original state.

The last looks code block restores a costume or background back to its original

appearance regardless of how many different graphical effects may have been

applied to it. For example, the following statement demonstrates how to restore a

costume or background’s appearance when the green flag button is pressed.

Changing a Sprite’s Size
The next three looks code block, shown in Figure 10.9, apply only to sprites. They

allow you to change a sprite’s size.

The first code block modifies a sprite’s size by specifying a relative value. Using

this code block, as demonstrated next, you can slowly increase a sprite’s size and

then reduce its size just as quickly.

204 Chapter 10 n Changing the Way Sprites Look and Behave

Figure 10.9
With these code blocks, you can modify a sprite’s size.

The second code block shown in Figure 10.9 lets you set a sprite’s size to a specific

percentage of its current size (larger or smaller). For example, the following script

begins by doubling the size of a sprite. It then pauses for a second and reduces the

sprite to 50% of its original size. After another brief pause, the sprite is restored to

its original size.

Making Sprites Appear and Disappear
The next two looks code blocks, shown in Figure 10.10, apply only to sprites. As

the text displayed on the blocks indicates, they programmatically display or hide

a sprite.

Since they do not accept any input, these two code blocks are very easy to work

with. For example, the following script can be added to any sprite to make it

disappear and then reappear after a one-second pause.

Making Sprites Appear and Disappear 205

Figure 10.10
With these two code blocks, you can control when sprites appear on the stage.

Determining What Happens when Two
Sprites Overlap
The last two Scratch looks code blocks, shown in Figure 10.11, specify what

happens when all or part of a sprite is covered by another sprite.

In Scratch, each sprite that you add to an application is assigned to a layer. For

example, suppose you create an application with multiple sprites. When you add

the first sprite to the application, it is placed at the topmost layer. When you add the

application’s second sprite, it gets added to the top layer, and the previous sprite gets

moved back one layer. Each additional sprite starts off on the top layer and stays there

until you either add another new sprite or until you click on one of the sprites that

was previously added, which moves the selected sprite back to the topmost layer.

By default, the first sprite would be placed on the top layer. The second sprite

added to the application would be placed on the second layer, and the third sprite

would be placed on the third layer.

Understanding the layer on which a sprite has been placed is important because

the sprite’s layer assignment determines whether it remains on top or is displayed

underneath another sprite when they overlap one another. Sprites at higher levels

remain on top of sprites at lower levels.

No t e

To better understand the importance of levels, consider what happens when you place five pieces
of paper on top of one another on a desk. The piece of paper sitting on top (at the top layer) is
visible, and your view of the other pieces of paper is obstructed. Now, reach into the middle of the
stack of paper, pull out a sheet, and place it on top of all the other pages. By altering the page’s
layer position, you have now made it visible.

In addition to controlling what happens to sprites by adding them to applications

in a specific order, controlling their layer position, you can use the code blocks

shown in Figure 10.12 to programmatically control a sprite layer location. For

example, using the first code block, you can move a sprite to the top layer,

ensuring that it remains visible at all times on the stage, even when other sprites

come into contact with it.

206 Chapter 10 n Changing the Way Sprites Look and Behave

Figure 10.11
With these code blocks, you can determine what happens when two sprites overlap.

As an example of how to work with both of these code blocks, revisit the Ball

Chase game that was presented in Chapter 9, where both of these two code blocks

were used to ensure that end of game messages were displayed on top of all other

sprites. In addition, the application also used these blocks to ensure that the cat

overlaps the ball when it catches it.

Developing the Crazy Eight Ball Game
Now it is time to turn your attention to the development of a new Scratch

application, the Crazy Eight Ball game. This game simulates the operation of a

crazy eight ball fortune-telling toy. As you work on the development of this game,

you will get additional experience with different looks code blocks. In total, the

application is made up of three sprites and three scripts. Figure 10.12 shows how

the game looks when first started.

To play the game, think of a question and then click on the image of the cat located

in the center of the eight ball. Once clicked, the image of the cat is replaced with

an 8, as demonstrated in Figure 10.13, and over the next four seconds, the sounds

of bubbles can be heard.

Developing the Crazy Eight Ball Game 207

Figure 10.12
To play, you must ask questions that can be answered with yes/no-style answers.

Figure 10.13
It takes a few moments for the crazy eight ball to come up with an answer.

The crazy eight ball displays any of five randomly selected answers in response to

player questions. The range of answers supported by the game includes:

n Maybe!

n No!

n Yes!

n Ask a different question!

n Maybe. . . but then maybe not!

Figure 10.14 shows how the game looks once it has finally decided on an answer

to the player’s question.

The development of this application project will be created by following a series

of steps, as outlined here:

1. Creating a new Scratch application project.

2. Adding and removing sprites.

3. Adding the variable needed by the application.

4. Adding an audio file to the application.

5. Adding a script to control the display of the 8 in the eight ball.

6. Adding the programming logic required to operate the eight ball.

7. Saving and executing your work.

208 Chapter 10 n Changing the Way Sprites Look and Behave

Figure 10.14
The crazy eight ball has decided not to answer the player’s question.

Step 1: Creating a New Scratch Project

Begin the creation of the Crazy Eight Ball game by creating a new Scratch project.

The easiest way is to start Scratch, which automatically creates a new application

project. Alternatively, if Scratch is already open, create a new application by

clicking on the New button located on the Scratch menu bar.

Step 2: Adding and Removing Sprites

The Crazy Eight Ball game consists of three sprites and three scripts, as shown in

Figure 10.15.

The first sprite that you need to add to the game is that of an empty eight ball.

The second sprite is that of a number 8. You will find copies of graphics for both

of these sprites located on this book’s companion CD-ROM. You can add these

sprites to your new Scratch application by clicking on the Choose New Sprite

from File button and then selecting these files. Alternatively, you can create them

yourself by clicking on the Paint New Sprite button and then using the Paint

Editor program. Once added to the stage, reposition these two sprites so that the

eight ball is centered in the middle of the stage and the number is centered in the

middle of the eight ball.

The application’s third sprite is that of a cat’s face. You can create this sprite by

using the Paint Editor program to edit the application’s default sprite, removing

the Cat sprite’s body, leaving just its face in place. Once modified, click on the

Developing the Crazy Eight Ball Game 209

Figure 10.15
An overview of the different components that make up the Crazy Eight Ball game.

Grow Sprite button located on Scratch’s toolbar and then click on the image of

the Cat sprite 12 times to increase the size of the cat’s face. Next, reposition the

Cat sprite, moving it onto the center of the eight ball so that it overlaps the Cat

sprite. At this point, the overall design of the Crazy Eight Ball game is complete.

Before moving on to the next step, rename these three sprites Cat, EightBall, and

Number, as shown in Figure 10.15.

Step 3: Adding a Variable Required by the Application

In order to execute, the Crazy Eight Ball game requires the definition of the

variable shown in Figure 10.16. To add this variable, click on the Variables button

located at the top of the blocks palette, click on the Make a Variable button, and

create a new variable named RandomNo.

This variable will be used to store a randomly generated number that the game

will use when generating answers to player questions.

Step 4: Adding an Audio File to the Application

The Crazy Eight Ball game makes use of a single sound effect, which sounds like

bubbles being blown in water. This sound is played for four seconds preceding

the display of the eight ball’s answer. The audio file that is played must be added

to the Cat sprite. To add this sound file, select the Cat sprite thumbnail in the

sprite list and then click on the Sounds tab located at the top of the scripts area.

Next, click on the Import button to display the Import Sound window, double-

click on the Effects folder, select the Bubbles audio file, and then click on OK.

Step 5: Creating a Script to Control the Display of the 8 in
the Eight Ball

Of the application’s three scripts, two belong to the Number sprite. These scripts,

shown next, are automatically executed based on the receipt of broadcast messages.

210 Chapter 10 n Changing the Way Sprites Look and Behave

Figure 10.16
The Crazy Eight Ball game requires one variable.

Specifically, when a message of Show 8 is received, the Eight sprite is made visible.

When the message Hide 8 is received, the Eight sprite is hidden. The receipt of these

messages serves as triggers, which control when the Eight sprite is visible (which only

occurs when the eight ball is in the process of preparing to generate an answer).

As you can see, these two scripts eachuse a looks code block to control sprite visibility.

Since the game begins by displaying only the image of the Cat sprite, go ahead and

click on the second script belonging to the Eight sprite, hiding it from view.

Step 6: Adding the Programming Logic Needed to
Control the Eight Ball

The last script in the application, shown next, belongs to the Cat sprite. It is executed

whenever the player thinks of a question and clicks on the Cat sprite for an answer.

Once started, the script begins by assigning a random number in the range of 1 to

5 to the RandomNo variable. Next, a looks code block is executed, hiding the Cat

sprite and then the broadcast message Show 8 is sent. This message will trigger the

Developing the Crazy Eight Ball Game 211

execution of a script belonging to the Eight sprite. Next, the Bubbles audio file is

played, and the script’s execution is paused for four seconds, allowing Scratch

time to finish playing the audio file. Once the four seconds is up, a second

broadcast message of Hide 8 is sent, triggering the hiding of the Eight sprite.

Next, the Cat sprite is redisplayed on the stage and the value assigned to RandomNo

is analyzed. Depending on the value assigned to RandomNo, one of five different

text messages is displayed in a speech bubble. After two seconds, the bubble is

closed, and the game waits on the player to ask another question.

Step 7: Saving and Executing Your Scratch Project

At this point, you have all of the information you need to create your own copy of

the Crazy Eight Ball game. As long as you followed along carefully with the

instructions provided in this chapter, you should not run into any problems. If

you have not done so yet, save your new Scratch application project and then

switch over to Presentation mode and test it.

Summary
In this chapter, you learned how to work with Scratch’s looks code blocks. This

included learning how to switch between sprite costumes and different stage

backgrounds and how to apply a range of special effects to sprites and back-

grounds. You learned how to display text in speech and thought bubbles, control

the size of sprites, and programmatically control sprite visibility. You also

learned about the importance of understanding layering and how it affects the

display of sprites. This chapter also guided you through the creation of the Crazy

Eight Ball game.

212 Chapter 10 n Changing the Way Sprites Look and Behave

Spicing Things Up with
Sounds

Many different types of applications, especially computer games, rely on sound as

a means of conveying meaning and excitement. Through the addition of back-

ground music and sound effects, applications can really come alive, providing

users with a deeper and more meaningful experience. In Scratch, sound effects

and music are integrated into applications using sound blocks. This chapter will

teach you how to work with all of Scratch’s sound blocks and demonstrate how

to incorporate audio files, drum notes, and musical notes into your applications.

On top of all this, you will learn how to create a new application called the Family

Picture Movie, which demonstrates how to create a slideshow complete with

accompanying background music.

The major topics covered in this chapter include learning how to

n Control the playback of audio files

n Play drum beats and pause drum play

n Set and control the volume at which audio files, notes, and musical in-

struments are played

n Set and change the tempo of drum and note play

213

chapter 11

Playing Sounds
To add the playback of music and sound effects to your applications, you need to

learn how to use the sound code blocks shown in Figure 11.1. These code blocks

provide everything you need to play or stop the playback ofMP3 and wave files in

your Scratch applications.

No t e

A wave file is a type of file designed for storing an audio bit stream on personal computers. Wave
files have a .wav file extension. An MP3 file is an audio file that utilizes advanced compression
technology while retaining high audio quality.

The first two code blocks shown in Figure 11.1 let you play any MP3 or wave file

that you add to your Scratch project. The third code block lets you stop the

playback of all of the audio files belonging to a sprite. In order to play an audio

file, you must first add it to a sprite or to the stage, which you can do by selecting

the stage or a sprite from the sprite list, clicking on the Sounds tab location at

the top of the scripts area, then clicking on the Import button. Once the file is

imported, you can play the audio file using a script belonging to the stage or

sprite, as demonstrated here.

In Figure 11.2, an audio file named meow is played when the green flag button is

pressed. In order to play the audio file, you must select it from the code block’s

drop-down list. The drop-down list is automatically populated by Scratch with

all the audio files that have been added to the sprite to which the script belongs.

The sound code block used in the previous script allows the script to which it

has been added to continue running. If the script containing the sound block

214 Chapter 11 n Spicing Things Up with Sounds

Figure 11.1
These code blocks control audio file playback.

Figure 11.2
The meow audio file is played when the green flag button is clicked.

has additional code left to be executed, the playback of the sound will be

cut short when the script continues executing. This was not a problem in

the previous example because the sound block was the last code block in the

script.

For situations where you want to pause script execution to allow time for the

entire audio file to finish playing, you have two choices. First, you can add a

control block to the script immediately following the sound block that pauses

script execution for a specified number of seconds (the number of seconds

needed to play the audio file). Better yet, you can use the second code block

shown in Figure 11.1 as demonstrated in the following script:

The sound code block used in this example plays an audio file that has been

previously added to your Scratch application, pausing script execution until the

audio file has finished playing. Once playback is complete, the rest of the script is

permitted to finish its execution.

T i p

If you want to add the repeated playback of background music or sound effects to an application,
create a script specifically for this purpose. This keeps the programming logic needed to play the
audio file separate from other scripts and eliminates the need to pause other scripts’ execution to
support audio playback.

Depending on what your applications are designed to do, there may be times

when you want to stop the playback of audio files belonging to a sprite or the

stage. This can be achieved using the third code block shown in Figure 11.1, as

demonstrated in the following example:

Here, the playback of any audio files belonging to the sprite is immediately halted

when the spacebar is pressed.

Playing Sounds 215

No t e

In addition to playing any of the audio files supplied with Scratch, you can import external audio
files, both MP3 and wave, into any sprite. If your computer has a microphone, you can record your
own audio files by selecting a sprite or the stage, clicking on the Sounds tab located at the top of
the scripts area, and then clicking on the Record button. This opens the Sound Recorder program
shown in Figure 11.3. To record a custom sound, just click on the red Record button, and when
you are done, click on OK. Once done, your new audio file will be displayed on the Sounds tab
immediately available to your application.

Play a Drum
Using the two code blocks shown in Figure 11.4, you can add the playing of a

drum to your Scratch application and, when necessary, pause drum play for a

specified number of beats.

The first code block shown in Figure 11.4 plays a drum sound for a specified

number of beats. This code block lets you choose from among 46 different types

of drums, each of which is easily selected by clicking on the code block’s drop-

down list, as demonstrated in Figure 11.5.

The second code block shown in Figure 11.4 lets you momentarily pause drum

play for a specified number of beats. Using both of the code blocks, you can play a

wide assortment of drums within your applications.

216 Chapter 11 n Spicing Things Up with Sounds

Figure 11.3
Scratch makes it easy to record your own custom audio files.

Figure 11.4
These code blocks let you control the playing of a drum within your applications.

In this example, the first sound block plays a drum beat for five beats using an

Acoustic Snare. The second sound block rests for .5 beats, and the third code

block uses an Open Triangle to play a drum for .5 beats.

Playing Musical Notes
In addition to playing audio files and different types of drum beats, Scratch lets

you play musical notes with various instruments using the sound code blocks

shown in Figure 11.6.

The first code block plays a note for a particular number of beats. You can specify

a note either by typing it into the code block’s first input box or by clicking on the

drop-down list located inside the code block’s input field, which displays a

graphic representation of a piano keyboard. Using this keyboard, you can select a

note by clicking on one of the keyboard keys, as demonstrated in Figure 11.7. The

range of available notes is from 0 to 127, with 60 representing the middle C note.

The second code block shown in Figure 11.6 specifies the instrument to be used

and is designed to be used in conjunction with the first control block. It supports

a total of 128 different instruments, numbered 1 to 128. You can select an

Playing Musical Notes 217

Figure 11.5
This code block supports the playing of 46 different types of drum sounds, numbered from 35 to 81.

instrument by keying its number into the block’s input field or by selecting an

instrument from the block’s drop-down list, as demonstrated in Figure 11.8.

The following script demonstrates how to use both of the code blocks shown in

Figure 11.6 to play a C note followed by a D note using a harpsichord. Each note

is played for .5 beats.

218 Chapter 11 n Spicing Things Up with Sounds

Figure 11.6
These sound blocks let you play notes using musical instruments.

Figure 11.7
Selecting a note is as easy as clicking on a piano key.

Figure 11.8
Selecting the instrument you want play within your Scratch application.

Configuring Audio Volume
Rather than playing audio files, drum beats, and musical notes at whatever

volume the computer is set to, you can use the sound code blocks shown in

Figure 11.9 to change or set the volume at which audio files, drum beats, and

musical notes are played.

The first code block shown in Figure 11.9 is used to change the volume of sound

playback for an individual sprite. Using this code block, you can change a sprite’s

volume by a specified percentage, with 0 being no volume and 100 being the

maximum volume. The second code block lets you assign a specific value to a

sprite in the range of 0 to 100. Using the third code block, you can retrieve a

sprite’s volume and optionally display this value in a monitor on the stage.

No t e

Volume is set individually for each sprite in an application. Therefore, you can assign different
volume levels to each sprite in your application.

An example of how to work with the first of these control blocks is provided here:

Here, an audio file named meow is played at the computer’s default volume level.

Next, the volume setting for the sprite to which the script has been added is

Configuring Audio Volume 219

Figure 11.9
Using these code blocks, you can take control of the volume of music and sound effects played by any
sprite in your application.

reduced by 80%. The meow file is then played a second time, this time much

quieter.

In this next example, the sprite’s volume is set to 10 percent of its default volume

level, after which an audio file named meow is played.

No t e

The third code block shown in Figure 11.9 can be used to retrieve a sprite’s current volume level.
In addition, by selecting its check box, you can enable a monitor that displays the volume level of
the sprite on the stage.

Setting and Changing Tempo
The last three looks blocks provided by Scratch are shown in Figure 11.10. Using

these blocks you can set, change, and report on the tempo at which drum beats

and musical notes are played.

The first code block shown in Figure 11.10 changes the tempo used to play a

drum or note. Tempo is a measurement of the speed, in beats per minute, at

which a drum or note is played. The larger the tempo value, the faster the drum

or note is played. The second code block lets you set the tempo used to play a

drum or note to a specific number of beats per second. Using the third code

block, you can retrieve a sprite’s currently assigned tempo and optionally display

this value in a monitor on the stage.

The following script demonstrates how to set and modify a sprite’s tempo when

playing musical notes:

220 Chapter 11 n Spicing Things Up with Sounds

Figure 11.10
These code blocks allow you to modify and report on the tempo used by a sprite to play beats and
notes.

Here, the tempo used to play notes is set to 60 beats per minute, and then, after a

one-second pause, a C note is played five times in a row, each time for a half a

beat. After another one-second pause, the sprite’s tempo is slowed down by 20

beats per minute, and another C note is played five times.

Creating the Family Picture Movie
The rest of this chapter is dedicated to showing you how to develop your next

application project, the Family Picture Movie. The development of this appli-

cation provides the opportunity to work further with different sound blocks,

controlling sound volume, playback, and playback termination. In total, the

application will be made up of 8 sprites and 13 scripts. Figure 11.11 shows how

the application looks when initially started.

To run the application and view its picture show, all you have to do is click on the

green flag button. Once clicked, the application begins an animation sequence

that counts down from five and then starts displaying a series of pictures

representing the contents of the movie, as demonstrated in Figure 11.12.

Background music is played to help set a friendly tone as the pictures are dis-

played. The Family Picture Movie is capable of displaying any number of pic-

tures. Once the movie ends, credits are displayed, as shown in Figure 11.13.

Creating the Family Picture Movie 221

Figure 11.11
The application begins by displaying a series of numbers, from 5 to 1, on an orange radar screen.

The development of this project will be created by following a series of steps, as

outlined here:

1. Creating a new Scratch project.

2. Adding and removing sprites and backgrounds.

3. Adding the variable needed by the application.

4. Adding an audio file to the application.

5. Adding the programming logic to control application execution.

6. Saving and executing your work.

Step 1: Creating a New Scratch Project

To begin the development of the Family Picture Movie, you must create a new

Scratch project. If Scratch is not already running, start it up, and you will be ready

to go. Otherwise, if you already have Scratch open, click on the New button

located on the Scratch menu bar, and a new project will be created for you.

222 Chapter 11 n Spicing Things Up with Sounds

Figure 11.12
As the movie plays, a series of pictures is displayed at three-second intervals.

Figure 11.13
Credits are displayed at the end of the movie.

Step 2: Adding and Removing Sprites and Backgrounds

The Family Picture Movie is made up of 8 sprites and 13 scripts, as shown in

Figure 11.14.

The application consists of two separate backgrounds: Counter, which is dis-

played when the application is first started and begins its countdown, and the

default blank stage background. A copy of the Counter background can be found

on this book’s companion CD. To add it, click on the Stage thumbnail located on

the sprite list and then click on the Backgrounds tab located at the top of the

scripts area. Next, click on the Import button and use the Import Background

window to locate and select the Counter background file. Since the Counter

background is going to be used as the application’s initial background, drag and

drop its thumbnail from the bottom of the list of background files to the top

position.

In addition to the background, the Family Picture Movie makes use of a number

of sprites. As shown in Figure 11.15, the first of these sprites is a black line. You

can create this sprite yourself using the Paint Editor program, or you can import

the Line sprite located on this book’s companion CD. To add this sprite, click

on the Choose New Sprite from File button, opening the New Sprite window,

and then locate and import the sprite. Once the sprite is added, you need to

position it exactly as shown in Figure 11.14.

Creating the Family Picture Movie 223

Figure 11.14
An overview of the different components that make up the Family Picture Movie application.

No t e

If you elect to create your own version of the Line sprite, you will need to set the rotation center
for the sprite as shown in Figure 11.15.

Next, you need to add five sprites representing numbers displayed during the

application’s opening animation sequence. To add the first of these five numbers,

click on the Choose New Sprite from File button and then drill down into the

Letters folder followed by the Stone folder. Next, select the 5 sprite and click on

the OK button. As you will see, the sprite is colored black and white. However, it

is supposed to be red and yellow. To fix this, you need to edit the sprite and

change its colors. To do this, select the thumbnail representing the sprite and

then click on the Costumes tab located at the top of the scripts area. Next, select

the sprite’s thumbnail and click on its Edit button, opening it in the Paint Editor

program. Using the Fill tool located in the Paint Editor’s toolbar, modify the

black portions of the sprite and make them red. Then modify all of the white

portions of the sprite, making them yellow. Using the steps outlined above, add

the 4, 3, 2, and 1 sprites to the application, editing each one so that they are red

and yellow.

Once the initial animation sequence has finished, the Family Picture Movie

begins displaying a series of graphics pictures. To add the first of these pictures,

click on the Choose New Sprite from File button and then add any graphic files

that you want. If you do not have a suitable graphic file handy, you can use the

224 Chapter 11 n Spicing Things Up with Sounds

Figure 11.15
Assigning a rotation center to the Line sprite.

Pics file located on this book’s companion CD. The rest of the pictures shown in

the application will be displayed by changing this sprite’s costume. To add

additional costumes to the sprite, select the sprite, click on the Costumes tab

located at the top of the scripts area, and then click on the Import button,

opening the Import Costume window. If you do not have any suitable pictures to

be used as backgrounds, you can import the background files provided on this

book’s companion CD. These background files have names like IM000327.

The last sprite to be added to the application is a graphic file that displays the

application’s credits. You can create and add your own sprite using the Paint

Editor program, or you can import the Credits sprite located on this book’s

companion CD. Once this sprite has been added, the stage should be filled with

different sprites. However, of all of these sprites, only the Line sprite needs to

remain visible. To temporarily remove each of the remaining sprites from view,

select each sprite one at a time, click on the Looks button located at the top of the

blocks palette, and then double-click on the Hide code block. By the time you are

done, the stage should look like the example shown in Figure 11.14.

Step 3: Adding a Variable Required by the Application

In order to execute, the Family Picture Movie requires that you define a single

variable. To add this variable, click on the Variables button located at the top of

the blocks palette, click on the Make a Variable button, and then create a new

variable named Counter, as shown in Figure 11.16.

The application will use the variable to control the execution of the application’s

opening countdown sequence, coordinating the display of the numbers used

during the countdown process.

Step 4: Adding an Audio File to the Application

As it executes, the Family Picture Movie plays background music to set the mood

for the application. The script responsible for playing this music belongs to the

Pics sprite. To add this audio file to the Pics sprite, select the sprite’s thumbnail

Creating the Family Picture Movie 225

Figure 11.16
The Family Picture Movie uses one variable to help control the opening animation sequence.

in the sprite list and then click on the Sounds tab located at the top of the scripts

area. Next, click on the Import button to display the Import Sound window,

double-click on the Music Loops folder, select the GuitarChords2 audio file, and

then click on OK.

Step 5: Developing the Application’s Programming Logic

The programming logic that drives the execution of the Family Picture Movie is

organized into 13 separate scripts, assigned to each of the application’s sprites

and to its background. The overall execution of all of this application’s scripts is

coordinated through the use of broadcast messages and through the use of

control blocks that monitor the value assigned to the application’s variable,

executing only when the variable reaches a predefined value.

Setting Up the Opening Animation Sequence

The Family PictureMovie begins running when the player clicks on the green flag

button. When this occurs, a number of the scripts within the application begin

executing. One of these scripts is responsible for managing the animated

sequence that plays when the application first begins executing. This script,

shown next, must be added to the Line sprite.

226 Chapter 11 n Spicing Things Up with Sounds

As you can see, this script begins by setting the direction of the Line sprite and

then makes it visible. Next, the Counter variable is assigned a starting value of 6,

after which a loop is set up to execute five times. Within this loop, a second loop

executes 36 times (for a total of 360 degrees), rotating the Line sprite by

10 degrees and pausing .005 second after each turn. The value assigned to Counter

is then decremented by a value of –1.

By the time the outer loop has executed five times, five other application scripts,

monitoring the value assigned to Counter, are executed. Each of these five scripts

is responsible for displaying a number on the stage. The end result is an animated

sequence that emulates the countdown that is often displayed at the beginning of

old movie reels. Once the countdown has been completed, a second loop exe-

cutes, rotating the Line sprite one final time around the center of the stage. Once

the last loop has finished, the value of Counter is reset to 6 and pointed back to its

initial direction. A one-second pause then ensues, and the Line sprite is hidden.

Lastly, a control block is used to send a broadcast message of Start Movie. This

broadcast message will be used to trigger the execution of two scripts belonging

to the Pics sprite, which is responsible for displaying the pictures that make up

the application’s picture show.

Displaying the Numeric Countdown

As the previous script executes, it modifies the value assigned to the Counter

variable, changing its value from 6 to 1, one number at a time. Each of the five

sprites representing the numbers displayed during the opening animation

sequence is displayed by scripts belonging to those sprites. The scripts belonging

to each sprite are nearly identical. The following script belongs to the Sprite5

sprite:

As you can see, it starts executing when the player clicks on the green flag button,

which begins by making sure that the sprite is hidden from view. The script then

goes into a loop that waits until the value of Counter is set to 5. Once this occurs,

Creating the Family Picture Movie 227

the script displays the sprite for 1.6 seconds and then hides it again. After creating

this script, drag and drop an instance of it onto the Sprite4, Sprite3, Sprite2,

and Sprite1 sprites and then modify the scripts belonging to each sprite by

changing the value that is looked for to 4, 3, 2, and 1, respectively.

Switching Costumes and Playing Background Music

As has been previously stated, the application displays different pictures by

changing costumes. In addition, background music is played to help set the

mood as the picture show begins. Two separate scripts, belonging to the Pics

sprite, are responsible for managing the switching of costumes and the playing of

the application’s audio file. Both of the scripts are automatically executed when

the Start Movie broadcast message is received.

The first of these two scripts, shown next, manages costume switches. It begins by

displaying a default costume of IM000327, which is then displayed on the stage.

Next a loop is set up that pauses three seconds and then switches the sprite’s

costume to the next costume in the list.

The second script, shown next, begins by sending out its broadcast message of

Clear background and then sets the sprite’s value to half its current level. Next, a

loop is set up that executes 10 times. Each time the loop executes, an audio file

named GuitarChords2 is played. At the end of its tenth execution, the loop halts,

and the Pics sprite is hidden. The script ends by sending out a broadcast message

of Show Credits.

228 Chapter 11 n Spicing Things Up with Sounds

No t e

The Show Credits broadcast message is used as a trigger that executes a script belonging to
the Credits sprite.

Displaying the Closing Credits

The Credits sprite has two scripts, as shown next. The first script executes when

the green flag button is pressed and is responsible for removing the display of the

sprite from the stage.

The second script is automatically executed when the Show Credits broadcast

message is received. It displays the Credits sprite, waits three seconds, and then

hides the sprite, leaving the stage blank. The script ends by executing a control

block that halts the execution of the application’s scripts.

Switching Backgrounds

The last two scripts belong to the stage. These scripts are shown next. The first

script executes when the green flag button is clicked. Its job is to switch the stage’s

background to Counter, readying the application to begin its five-second

countdown sequence.

The second of the stage’s scripts automatically executes when the Clear Background

broadcast message is received. Once executed, it switches the stage back to the

default Clear background.

Creating the Family Picture Movie 229

Step 6: Saving and Executing Your Scratch Project

Assuming you have followed along carefully with the instructions that have been

provided, your copy of the Family Picture Movie should be ready for testing. If

you have not already saved your new application, do so now. When you are

ready, click on the green flag button to run the application and watch the movie.

In the event that you run into any problems, go back and recheck your work

against the instructions outlined in this chapter.

Summary
The addition of sound playback is fundamental to the operation of many Scratch

applications. In Scratch, sound effects and music playback are controlled

through different sound code blocks. Using these code blocks, you can convey

additional meaning and enhance excitement when your applications run. This

chapter provided instruction on how to work with all of Scratch’s sound blocks

and to use them to play audio files, drum notes, and musical notes. You also

learned how to change the tempo at which drums and notes are played; control

the volumes at which audio files, notes, and drum beats are played; and select

different types of drums and instruments to be played.

230 Chapter 11 n Spicing Things Up with Sounds

Drawing Lines and Shapes

In addition to displaying sprites with different costumes and different stage

backgrounds, Scratch also draws custom lines, shapes, and other graphics using

pen code blocks. Using a virtualized pen, these blocks allow you to set the color,

width, and shade used in drawing operations. This chapter reveals how to work

with all of Scratch’s pen blocks and will end by demonstrating how to use them to

create a paint drawing application.

The major topics covered in this chapter include learning how to:

n Draw using Scratch’s virtual pen

n Set the color used when drawing

n Set pen shade and size

n Stamp a copy of a costume on the stage

n Clear the stage of any drawing operations

Clearing the Stage Area
The first of Scratch’s pen code blocks, shown in Figure 12.1, is designed to let you

clear out any drawing operations that you may have made on the stage.

231

chapter 12

Anything you draw or stamp on the stage’s current costume does not actually

change the costume. Therefore, when you clear out any drawing, the costume

that makes up the background remains unchanged. The following script

demonstrates how easy it is to use this code block:

By adding a script like this to a Scratch application, you can reset the stage back to

its original state (erasing any drawing made to the stage).

Drawing with the Pen
Within Scratch applications, drawing is performed using a virtual pen. This pen

works very much like a real pen. When placed in a down position, it can be used

to draw on the stage. When placed in an up position, drawing ceases. In order

to draw or stop drawing, you must be able to programmatically control the

pen’s up and down positions, which you can do using the code blocks shown in

Figure 12.2.

Using the first code block, you can easily create a simple drawing application. To

create this application, start a new Scratch project and then delete the default cat

sprite and replace it with a new sprite made up of a small black dot (easily created

using the Paint Editor program). Once you have created your new application as

described above, select its sprite and add the following script to it:

232 Chapter 12 n Drawing Lines and Shapes

Figure 12.1
This pen block is used to clear out any drawing operations that you may have made on the stage.

Figure 12.2
Using these pen blocks, you can control when the pen can be used to draw.

When executed, this script clears the stage and then places Scratch’s virtual pen in a

down position, enabling drawing to occur (whenever the sprite to which the script

belongs is moved). Next, a loop is set up that uses a motion block tomake the sprite

follow the pointer around the stage. As a result, whenever you move the mouse

around the stage, the sprite follows, and a line is drawn. Once you create and run

your own copy of this application, it should become immediately clear that you do

not have enough control over the pen. Specifically, you cannot control when and

when not to draw. This situation is easily remedied by modifying the script so that

you can place the pen in a down or up position based on the status of the mouse-

pointer’s left-mouse button, as shown next.

Drawing with the Pen 233

Figure 12.3 shows an example of a picture drawn on the stage using this modified

version of the application. By being able to control when the pen is in a down

position, you can produce a precise drawing.

Figure 12.3
A quick little doodle created using a small drawing application.

Setting Pen Color
In addition to being able to clear the stage and control when the pen is up or

down, Scratch also specifies the color that is used in drawing operations using

any of the three pen code blocks shown in Figure 12.4.

The first code block shown in Figure 12.4 lets you set the color to be used when

drawing by allowing you to click on the color swatch located in its input field.

When the swatch is clicked, Scratch responds by displaying a color palette, as

shown in Figure 12.5. You can select the color you want either by clicking on the

color shown within the color palette or by moving the pointer, which now looks

like a dropper, over any color currently displayed anywhere on the Scratch IDE

and clicking in it. Once specified, the color you selected is displayed in the code

block’s input area.

The following script demonstrates how to use this code block to specify the color

you want to use.

Here, the stage is cleared, and the pen’s color is set to red. Otherwise, the

application operates no differently than before.

234 Chapter 12 n Drawing Lines and Shapes

Figure 12.4
The code blocks let you control the color used when drawing.

Figure 12.5
Select a color by clicking anywhere on the color palette.

Scratch also lets you specify the color to be used when drawing by specifying a

number. For example, the following list identifies numbers that you can use to

specify a range of commonly used colors.

n 0 = red

n 20 = orange

n 35 = yellow

n 70 = green

n 130 = blue

n 150 = purple

n 175 = pink

By experimenting with other numbers, you identify a host of different colors. For

example, using the second code block shown in Figure 12.4, you change the color

used when drawing, changing it relative to its currently assigned value.

Setting Pen Color 235

Here, the pen block has been added to the beginning of the script’s loop. Each

time the loop repeats, it changes the pen’s current color assignment by a value of

10. The result is that a rainbow effect is applied as you draw, with the color

changing across a full spectrum supported by Scratch as youmove the mouse and

draw on the stage.

Using the third code block shown in Figure 12.4, you can specify the color to be

used when drawing using its associated numeric value. For example, you could

modify the application’s script to draw using red with this code block by passing

it a value of 0, as demonstrated here.

Changing Pen Shade
In addition to selecting color, Scratch also allows you to select the level of shading

applied when drawing. The range of values supported by the pen shade is 1 to

100, as demonstrated in Figure 12.6.

By default, Scratch applies a shading value of 50 when drawing colors. A shade

value of 0 results in a black color. A shade value of 100 results in white. Scratch

lets you specify the level of shading to be applied when drawing using either of

the pen code blocks shown in Figure 12.7.

236 Chapter 12 n Drawing Lines and Shapes

Figure 12.6
Shading affects the application of light to a color.

As an example of how to work with the first code block shown in Figure 12.7, let’s

modify the drawing example again as shown here.

Here, the shading level has been increased by a value of 10. Rather than change the

shading level relative to its current value, you can use the second code block shown

in Figure 12.7 to specify a shade level, as demonstrated in the following script:

Changing Pen Shade 237

Figure 12.7
You can change the value used to apply shading by varying its current value or by setting an entirely
new value.

Working with Different Size Pens
In addition to setting color and shading values, Scratch also lets you change the

size of the pen. This can be accomplished using either of the two pen code blocks

shown in Figure 12.8.

By default, Scratch draws using a pen size of 1. You can change the pen size relative

to its current size using the first code block, as demonstrated in the following script:

238 Chapter 12 n Drawing Lines and Shapes

Here, the size of the pen used in the drawing application in increased by 1,

making it twice its default size. If you prefer, you can simply assign a specific pen

size using the second code block, as demonstrated here.

Figure 12.8
Scratch supports an unlimited number of pen sizes.

In this example, the drawing application has been modified to use a pen that’s

size has been increased to 10. Figure 12.9 shows an example of a simple drawing

created using the application with this pen size.

Stamping an Instance of a Costume on the Stage
In addition to all of the pen code blocks demonstrated so far, Scratch provides

one last block, shown in Figure 12.10, which allows you to capture a sprite’s

costume and use it to stamp copies of the sprite on the stage.

As an example of how to work with this code block, create a new Scratch

application, remove the default cat sprite from it, and then add a copy of the

crab1-a sprite to it. You will find this sprite in Scratch’s Animals folder. Once

added, shrink the sprite down to about a third of its default size and then add the

following script to it.

Stamping an Instance of a Costume on the Stage 239

Figure 12.9
An example of a drawing made using a pen size of 10.

Figure 12.10
This code block lets you use a sprite’s costume as the basis for creating a stamp.

When executed, this script clears the stage of any previous drawing, which also

includes stamps, moves the sprite to the upper-left corner of the stage, and sets its

direction. Next, a loop is executed four times, stamping the image of the sprite

four times as it is moved around the stage. Figure 12.11 shows how the stage will

look once the script has finished executing.

Creating the Doodle Drawing Application
At this point you have completed your review of all of Scratch’s code blocks and

have learned how to put them all to work. Now it is time to work on the chapter’s

application project, the Doodle Drawing application. This paint-like application

expands on the examples you have been working on throughout this chapter,

making extensive use of the pen code blocks and allowing you to draw by

selecting from a range of predefined colors. The application allows you to draw

using a range of different pen sizes. There is also a Clear feature that lets you start

over any time you want so that you can begin working on a new drawing.

In total, the Doodle Drawing application is made up of 12 sprites and 3 scripts.

Figure 12.12 shows how the game looks when first started.

240 Chapter 12 n Drawing Lines and Shapes

Figure 12.11
Decorating the stage using a sprite as the basis for generating stamps.

Figure 12.12
Drawings are made by holding down the left mouse button and moving the mouse-pointer around the
stage.

To create a drawing, click on one of buttons shown on the left-hand side of the

stage to pick a color, then hold down the mouse’s left button, and move the

mouse-pointer around the stage. If you want, you can use different-sized lines

when drawing by pressing keyboard keys 1 through 9. Pressing the 1 key results

in a thin line, whereas pressing the 9 key results in a line that is approximately a

quarter-of-an-inch thick. If you make a mistake or want to start over, you can

do so at any time by clicking on the Clear button located at the lower-left side of

the stage.

Figure 12.13 shows the Doodle Drawing application in action. Here, the appli-

cation has been used to draw a snowman, complete with a blue hat and red scarf.

The development of this application project will be created by following a series

of steps, as outlined here:

1. Creating a new Scratch application project.

2. Adding and removing sprites.

3. Developing the application programming logic.

4. Saving and executing your work.

Step 1: Creating a New Scratch Project

To begin work on the Doodle Drawing application, you need to create a new

Scratch project. If Scratch is already running, click on the New button located on

the Scratch menu bar. Otherwise, start Scratch up, and it will automatically

create a new application for you to work on.

Creating the Doodle Drawing Application 241

Figure 12.13
You can use any of 10 colors and 9 different pen sizes when drawing.

Step 2: Adding and Removing Sprites

The Doodle Drawing application is made up of 12 sprites and 3 scripts, as shown

in Figure 12.14.

This application does not need the default cat sprite, so you should begin by

removing that sprite from the application. The first 10 sprites that you need to

add to the application represent the application button controls. To add the first

of these controls, click on the Choose New Sprite from File button and drill down

in to the Things folder where the New Sprite window appears. Next, locate and

select the button sprite and then click on OK. Once it has been added to the stage,

drag and drop this sprite to the upper-left corner of the stage, click on the

Costumes tab located at the top of the scripts area, and then click on the sprite’s

Edit button.

Using the Fill tool feature located on the Paint Editor’s toolbar, change the entire

surface of the sprite to red. This will take a number of different clicks because the

sprite has many shaded areas and cannot therefore be filled with red in a single

click. Once you have completed this task, click on the Paint Editor’s OK button

and then rename the sprite Red.

242 Chapter 12 n Drawing Lines and Shapes

Figure 12.14
An overview of the different parts of the Doodle Drawing application.

Now that the first of the 10 button sprites has been created, things will go a lot

faster. Right-click on the Red sprite and select Duplicate from the popup menu

that appears. Rename the new sprite Orange and then click on the Edit button

located in the Costumes tab. Using the Fill tool control, make the button

orange and then click on OK. Now, reposition the Orange sprite so that it lines

up just under the Red sprite. Using the steps outlined in this paragraph, create

eight more buttons for the following colors.

n Yellow

n Green

n LightBlue

n NavyBlue

n Purple

n Pink

n Black

n White

Next, you need to add a small sprite in the shape of a black dot to the

application. To do so, click on the Paint New Sprite button and then when

the Paint Editor appears, click once on its canvas to make a black dot and

then click on the OK button. Rename this sprite Drawing Point. Now, add

the last sprite using the same steps you used to add the application’s first

button. Once added, click on the Edit button located on the Costumes tab

and using the Text tool feature located on the Paint Editor’s toolbar, add

the word Clear on top of the button (using the ComicSans font with a font

size of 14). Click on the OK button when you are done and rename the

sprite Clear and then reposition the sprite so that it appears as the final

button on the lower-right side of the stage.

The default blank background will be used in this application to provide it

with white space on which to draw. Assuming that you have created all of

the sprites as instructed above, you should be ready to begin the coding

process.

Creating the Doodle Drawing Application 243

Step 3: Creating Scripts Used to Control the Doodle
Drawing Application

Most of the Doodle Drawing application’s programming logic resides within a

single script belonging to the Drawing Point sprite. This script is responsible for

all drawing operations, including determining which color and what size pen the

user wants to use. The remaining logic revolves around the clearing of the stage,

which is handled by two small scripts, one belonging to the Clear sprite and the

other to the stage.

Developing the Drawing Point Sprite’s Programming Logic

The programming logic that controls the overall execution of all drawing within

the Doodle Drawing application belongs to a script that must be added to the

Drawing Point sprite. Do not let the length of the code deceive you; the pro-

gramming logic is really very simple.

To help make things easy to follow, the script will be developed in three parts. For

the first part, create and add the following script to the Drawing Point sprite:

As you can see, the script executes when the green flag button is pressed. It starts

by setting a default pen size of 4 and a default color of black. Next, a loop is set up

that will be used to manage the execution of all of the remaining code blocks. The

first set of code blocks to be embedded within the loop is already present. It

consists of a control block that checks to see if the left mouse button is being

pressed, and if it is, the Drawing Point sprite is moved to the mouse-pointer, the

pen is placed in a down position, and the Drawing Point sprite is displayed. If the

244 Chapter 12 n Drawing Lines and Shapes

left mouse button is not being pressed, then the pen is placed in an up position

and the Drawing Point sprite is hidden from view.

The programming logic outlined above is responsible for the overall manage-

ment of the drawing process and is in fact all that is needed to create a simple

drawing application. If you want, you can switch to Presentation mode and run

the application and use it to draw. Of course, as currently written, the application

only allows the user to draw using a color of black and a pen size of 4. To enhance

the application so that the user can select different colors by clicking on one of

the color buttons located on the left-hand side of the stage, add the following

code block to the end of the script, placing it inside and at the bottom of the

script’s loop.

As you can see, the code blocks shown previously are organized using 10 separate

conditional code blocks, each of which checks to see if the Drawing Point sprite

has been moved over one of the 10 color buttons. (In order for the sprite to be

moved over one of the buttons, the Drawing Point sprite must be visible, which

occurs only when the left mouse button is pressed.) If it has, then the pen’s color

is changed to reflect the button the user has clicked.

Creating the Doodle Drawing Application 245

No t e

The application only switches color when the Drawing Point sprite is moved over a color
button and the left mouse button is clicked. The Drawing Point must be visible for this to work,
and this is the case only when the left mouse button is being pressed. Therefore, to select a color,
the user must click on the color. Simply moving the mouse over a color will not select it.

In addition to allowing the user to choose a color by clicking on one of the

application’s 10 color button controls, the application also allows the user to

change pen size by clicking on keyboard keys 1 through 9. To enable support for

different pen sizes, add the following code block to the script, inside and at the

bottom of the script’s loop.

As you can see, these code blocks are organized using nine separate conditional

control blocks, each of which monitors the keyboard looking for a specific key to

be pressed and changing pen size accordingly.

Clearing the Stage

In addition to facilitating drawing using different colors and pen sizes, the

Doodle Drawing application also allows the user to clear the stage at any time to

ready it for a new drawing. The programming logic that allows the user to clear

246 Chapter 12 n Drawing Lines and Shapes

the stage to start a new drawing is managed by the Clear sprite in conjunction

with the stage. The process of clearing the stage is initiated whenever the user

clicks on the Clear sprite. When this happens, the following script, which needs

to be added to the Clear sprite, is executed.

As you can see, all that this script does is send a broadcast message of Clear,

indicating that the user wants to clear the stage. This broadcast message serves as

a trigger that initiates the execution of the following script, which must be added

to the stage:

As you can see, this script is very straightforward. It executes a pen code block

that clears off the stage whenever the Clear broadcast message is received.

Step 4: Saving and Executing Your Scratch Project

All right! You now have all of the information needed to create and execute the

Doodle Drawing application. Assuming that you followed along carefully with all of

the instructions that were provided, you should be ready to test your new appli-

cation. If you have not already done so, save your new Scratch application project

and then switch over to Presentation mode and click on the green flag button.

As you work with the Doodle Drawing application, be sure to click on every one

of its buttons to make sure the pen switches its color when drawing. Also,

experiment with each of the application’s line sizes to ensure they are working

properly.

Summary
This chapter’s focus was on teaching you how to work with Scratch’s virtual pen

to draw all kinds of different lines, shapes, and graphics. You learned how to

enable and disable drawing by controlling the pen’s up and down position. You

Summary 247

learned how to modify the color and pen width and control the level of shading

that is applied. You also learned how to capture a sprite’s costume, use it to

stamp its image on the stage, and clear off any drawing operations from the stage.

Finally, through the development of the Doodle Drawing application, you got to

put all of this new information to practical use.

248 Chapter 12 n Drawing Lines and Shapes

Advanced Topics

Part III

This page intentionally left blank

Sharing Your Scratch
Projects over the
Internet

Scratch’s slogan is ‘‘Imagine, Program, Share.’’ As the slogan implies, sharing is a

big part of Scratch. The Scratch website is specifically designed to facilitate sharing

and to promote the development of a large global community of Scratch pro-

grammers. By sharing ideas and projects with other Scratch programmers, you not

only help others to learn but you increase your own knowledge and experience as

well. This chapter will teach you everything you need to know about how to

upload, manage, and share your Scratch applications on the Scratch website,

helping you to become an active member of Scratch’s global community.

The major topics covered in this chapter include learning how to:

n Register a new account at the Scratch website

n Upload your Scratch applications

n Delete applications that you have uploaded

n Post comments and add tags to your uploaded applications

n Create galleries in which you can store and organize your applications

Running Scratch Applications on the Internet
Scratch is all about learning and sharing. The Scratch website (http://

scratch.mit.edu) is specifically designed to facilitate both of these objectives,

making it easy for you to upload and run your Scratch applications online and

251

chapter 13

http://scratch.mit.edu
http://scratch.mit.edu

to run and download applications submitted by members of the global Scratch

community.

No t e

At the time this book was written, over 125,000 Scratch projects had already been posted on the
Scratch website, providing a wealth of examples that you can download, study, and learn.

To view and run Scratch applications on the Scratch website, you need to use a

web browser that supports Java. As an easy way to determine if Java is installed on

your browser, visit the Scratch website and click on one of the many available

Scratch projects. If the application opens, then Java is installed and working

correctly. However, if you see results similar to those shown in Figure 13.1, Java is

not installed.

If you determine that you need to install Java, you can do so for free by visiting

http://www.java.com/en/download, clicking on the Free Java Download button,

and following the instructions that are provided.

Registering with the Scratch Website
In order to upload your Scratch applications to the Scratch website, you must

first register for a free Scratch account. To do so, go to http://scratch.mit.edu/

signup as shown in Figure 13.2 and fill out the required form.

252 Chapter 13 n Sharing Your Scratch Projects over the Internet

Figure 13.1
Determining if your browser supports Java so that it can run Scratch applications.

http://www.java.com/en/download
http://scratch.mit.edu/

No t e

If you are over 18 years of age, you will also be prompted to supply your email address.

Once you have finished filling out the required information, click on the Sign Up

button. A new account will then be created for you, and you will be logged into

the website, as demonstrated in Figure 13.3.

Registering with the Scratch Website 253

Figure 13.2
You must register with the Scratch website before you can upload your applications.

Figure 13.3
Once registered, you can upload applications and create galleries in which to store your applications.

Once you have created a new account, you can begin uploading your Scratch

applications. At the time this book was written, the Scratch website placed a

10MB limit on the size of application projects that could be uploaded. The

purpose of this restriction is to ensure that plenty of space is made available to all

members of the Scratch community and to help ensure that upload and

download times are kept to a reasonable level.

Once they are uploaded, you can manage your uploaded Scratch applications by

logging in to the Scratch website using your new account. There is one important

point you need to know: Once uploaded to the Scratch website, there is no way to

restrict or keep private any of your Scratch applications. Everything uploaded is

made available to anyone who visits the website.

Uploading Your Scratch Applications
The first step in sharing a Scratch application is to click on the Share! button

located at the top of the Scratch IDE, displaying the window shown in Figure 13.4.

Begin by keying in your account name and password and then provide a name for

your project. Next, enter any notes that you think other Scratch programmers

visiting the Scratch website will need to know to work with your application.

254 Chapter 13 n Sharing Your Scratch Projects over the Internet

Figure 13.4
You can provide detailed information about your applications when uploading them.

No t e

In addition to providing instructions about how to work with your application, you should also use
the Project Notes area to acknowledge the source of any audio or graphic files that you use in
your application.

Scratch also supports an optional tagging feature that you can use to help other

Scratch programmers locate your applications when searching the Scratch

website. By default, Scratch lets you select any of six predefined tags covering the

following categories.

n Animation

n Art

n Game

n Music

n Simulation

n Story

In addition, you can also create as many as four custom tags by supplying

keywords that you think best describe your application and its purpose. Once

you have finished filling out this window, click on the OK button, and the upload

process will begin.

No t e

Note the option located at the bottom of the Upload to Scratch Server window. This option is
automatically selected by default. It instructs Scratch to compress any sound and image files that
make up your application before uploading them to the Scratch website. Compressing audio and
image files during upload has no effect on the files stored on your computer. This is in direct
contrast to the compress sounds and compress images commands provided by the Extras
button on the Scratch IDE. These two commands compress any audio and graphic files used in
your application.

Once it is compressed, you cannot uncompress a sound or graphic file, so you should plan on
maintaining an original copy of your media files someplace for safekeeping. Given the ability to
automatically compress sounds and images on the fly when uploading your Scratch applications,
there is very little need for the commands provided on the Extras button.

Once an upload is started, a dialog window similar to the one shown in Figure 13.5

is displayed, allowing you to track the progress of the upload process.

Uploading Your Scratch Applications 255

One the upload process has completed, the dialog window shown in Figure 13.6

will be displayed.

If you want, you can click on the blue scratch.mit.edu link located in the middle

of the dialog window to automatically open your browser and log yourself into

the home page of the Scratch website, where you will find your uploaded

application waiting on you, as demonstrated in Figure 13.7.

256 Chapter 13 n Sharing Your Scratch Projects over the Internet

Figure 13.5
Scratch keeps you abreast of what is happening as it uploads your applications.

Figure 13.6
You can click on the scratch.mit.edu link to launch your browser and view your uploaded applications.

Figure 13.7
The uploaded application is visible and ready to run online.

Viewing and Organizing Your Applications Online
Any Scratch application projects that you upload to the Scratch website are

stored on your home page on the website, as demonstrated in Figure 13.8.

From here you can run your application, post comments for it, add additional

tags, and create galleries into which to organize your applications. You can also

delete any projects that you have uploaded and view comments posted by other

members of the Scratch community.

Running Your Application

Once they are uploaded, you can view and execute your applications online by

clicking on them. This opens the application and makes it ready for execution, as

demonstrated in Figure 13.9.

Once it is opened, you can interact with and run your application in exactly the

same manner as you did when running it on your local computer. For example,

the green flag and red Stop Everything buttons are both clearly visible in the

upper-right corner of the online stage. Once they are started, you can interact

with Scratch applications using the mouse and keyboard as well.

Adding Comments

You can share additional information about your Scratch application by posting

comments. To do so, scroll down the screen as demonstrated in Figure 13.10 to

expose the Add a Comment entry field.

Viewing and Organizing Your Applications Online 257

Figure 13.8
Once logged onto the Scratch website, you can view, execute, and manage all your applications.

258 Chapter 13 n Sharing Your Scratch Projects over the Internet

Figure 13.9
Your online application can be run in exactly the same way you run it on your computer.

Figure 13.10
Adding comments to your Scratch application.

You can enter any text that you want into this field and then click on the Add

button to post your comments. Once posted, your comments, as well as any

comments that other members of the Scratch community post about your

application, are visible. For example, Figure 13.11 demonstrates how comments

look once posted.

As you can see, comments are posted at the bottom of the web page, as is the

account name of the individuals who post them.

Adding Tags

In addition to adding tags to your application projects when uploading them,

you can also add them online. As demonstrated in Figure 13.12, tags are dis-

played to the right of your application once it has been opened.

You can add new tags, one at a time, by keying them in to the Add Tags field and

then clicking on the Add button. You can also delete any tag that you no longer

consider useful by clicking on the [x] characters located just to the right of the tag.

Viewing and Organizing Your Applications Online 259

Figure 13.11
Viewing the comments posted about your application.

260 Chapter 13 n Sharing Your Scratch Projects over the Internet

Figure 13.12
Adding tags to your applications makes them easier to find.

Creating Galleries

As you begin to upload your Scratch applications, you may find it helpful to

organize them into different galleries. A gallery is a collection of Scratch appli-

cations. Typically, most Scratch programmers group their applications into

related collections. For example, you may create one gallery to organize your

games and a separate gallery for your other applications.

To create a gallery, go to your home page and scroll down and click on the Create

link located in the Galleries section on the left-hand side of the web page. This

will display the Create New Gallery page, as shown in Figure 13.13.

To create a gallery, you provide it with a name and description, and you specify who

can add projects to it. You choices of who can add projects to your gallery include:

n Only Me

n My Friends

n Everyone

You can access your gallery by clicking on its link, which automatically adds

a Galleries area to the bottom-left side of the page, as demonstrated in Figure 13.14.

Viewing and Organizing Your Applications Online 261

Figure 13.13
Creating a new gallery where you can store your Scratch applications.

Figure 13.14
You can access your new gallery by clicking on the link at the bottom of the web page.

You can add a Scratch application to one of your galleries by opening the

application and then clicking on the Add to a Gallery link located just below the

stage area. When you do this, the web page expands to include a Where Do You

Want to Add section, as demonstrated in Figure 13.15.

This section displays a list of all your galleries. To add the application to a gallery,

select the check box control to the left of the gallery’s name.

You can display a listing of all of the applications stored in your gallery by

opening the gallery. For example, the gallery shown in Figure 13.16 currently has

a single application stored in it.

In addition to viewing your own gallery, you can browse any gallery on the

Scratch website by clicking on the Galleries button located at the top of any

Scratch web page. In response, a list of galleries is displayed. By default,

10 galleries are displayed at a time, and you can navigate through the entire list

using the navigation controls located on the right-hand side of the page, as

demonstrated in Figure 13.17.

The most recently created galleries are displayed first. However, by clicking on

the buttons located near the top of the page, you can display galleries based on

which ones have the most projects, or you can view featured galleries.

262 Chapter 13 n Sharing Your Scratch Projects over the Internet

Figure 13.15
Adding an application to a gallery.

Viewing and Organizing Your Applications Online 263

Figure 13.16
Managing your gallery.

Figure 13.17
Exploring application galleries.

Removing Projects

If you decide that you want to remove any of the applications you have uploaded

to the Scratch website, you may do so by displaying your list of projects, selecting

one ormore using the application’s check box control (located just underneath it),

and then clicking on the Delete Selected Project button, as shown in

Figure 13.18.

Updating Your Projects

If after uploading one of your Scratch applications to the Scratch website you

decide to make changes to it that you would like to share, you may do so by

simply uploading it again, using the exact same name that you used to upload it

the first time. If you want to keep the original copy of the application intact on

the Scratch website, then you will need to assign a different name to the updated

version of your application before you upload it.

Other Scratch Website Features

The Scratch website supports many other features related to the sharing of

Scratch application projects that have not been discussed in this chapter but

264 Chapter 13 n Sharing Your Scratch Projects over the Internet

Figure 13.18
Deleting an application that you have uploaded to the Scratch website.

which you may want to investigate and learn more about. For example, you can

change your personal profile information by uploading a picture to represent

who you are. You can also change your password. As you browse the website, you

can add applications that you really like to a favorites list, making them easy to

return to and find again.

You can delete your galleries by clicking on the Delete This Gallery button when

viewing one of your galleries. You can add projects that you have uploaded into

galleries by opening the gallery that you want to place the application into and

then clicking on the Add My Project button. This displays a list of your projects,

allowing you to select which ones you want to move into the current gallery. You

can even upload a custom graphic from your desktop to be used to represent

your gallery.

Downloading Other People’s Projects
In addition to allowing you to upload and share your Scratch application projects

with Scratch programmers from around the world, the Scratch website also offers

access to all of the application projects that other programmers have uploaded.

As such, you have instant access to a virtually unlimited number of Scratch

applications, all of which you can view, run, and if you want, download. Once it

is downloaded, you can study the application and see how it works. If you have

ideas for making it better, you can use it as the basis for creating your own version

of the application.

Downloading a Scratch application project is easy. First, locate and open the

application that you want to download, and then look for its download link,

located in the upper-right corner of the web page, as demonstrated in Figure 13.19.

Once you click on a Scratch project’s Download link, a File Download window is

displayed, asking you what you want to do. Your choices are to open a copy of the

application into Scratch on your local computer or to download the application

as a file to your computer, allowing to you open and work with it later.

No t e

If you elect to open an application project using Scratch, you can still save a copy of it on your
computer using Scratch’s Save As button. If you elect to download the application project as a file,
the file that is downloaded can then be easily identified by its name, the familiar Scratch cat icon,
and its .sb file extension.

Downloading Other People’s Projects 265

Summary
This chapter provided instruction on how to upload your Scratch applications to

the Scratch website. Doing so allows you to share your work with other members

of the Scratch global community. The Scratch website places thousands of

applications at your fingertips, allowing you to not only run them but to

download them and see how they work. Through the exchange of application

projects, you can become a much more knowledgable and effective programmer,

leveraging not only your own work but also the work and ideas of others.

266 Chapter 13 n Sharing Your Scratch Projects over the Internet

Figure 13.19
Downloading an application from the Scratch website.

Collecting External
Input Using a
Scratch Board

In addition to using Scratch to develop all kinds of games and applications and

interacting with those games and applications using the mouse and keyboard,

Scratch is also designed to interact with a special piece of hardware known as a

Scratch Board. Using a Scratch Board, you can create applications that are

capable of sensing and collecting real-world input. Scratch Boards come with a

number of built-in controls, including a slider, a button, and four pairs of

alligator clips, as well as two sensors that allow it to capture light and sound data.

This chapter will teach you everything you need to know to work with a Scratch

Board, including how to install and programmatically interact with it.

The major topics covered in this chapter include:

n Learning how to purchase a Scratch Board

n Downloading and installing Scratch Board software

n Using sensing code blocks to programmatically interact with a Scratch

Board

n Keeping an eye on Scratch Board data using different types of monitors

267

chapter 14

Interacting with the Real World
A Scratch Board is a specialized piece of hardware, shown in Figure 14.1, which

you can purchase directly from the Scratch website and attach to your com-

puter via a USB connection. Once a Scratch Board is connected to your computer,

your Scratch applications can begin collecting, processing, and responding to

different types of real-world data, collected by the Scratch Board’s built-in set of

sensors and controls.

Scratch Boards come equipped with a number of controls and sensors; their

functions are outlined here:

n Slider. Detects the current position of the Scratch Board’s slider control.

n Light Sensor. Detects the amount of light that is currently visible through

the Scratch Board’s light sensor.

n Button. Returns a value of true or false, depending on whether the Scratch

Board’s button is being pressed.

n Sound Sensor. Detects the loudness of sounds through the Scratch Board’s

sound sensor.

n Alligator Clips. Provides a measurement of the electrical resistance in a

circuit.

268 Chapter 14 n Collecting External Input Using a Scratch Board

Slider

Light
Sensor

Sound
Sensor

Alligator
Clips

Button

Figure 14.1
Scratch Boards allow your applications to incorporate external input into your applications.

The rest of this chapter is dedicated to teaching you how to install and interact

with a Scratch Board. In doing so, you will be able to incorporate a whole new

range of input into your applications, using for example variations of light and

sound to control the execution.

T i p

In addition to the information provided in this chapter, you can learn more about Scratch Boards
by visiting http://scratch.wik.is/Support/Scratch_Board. Among the items you will find on this web
page is a link to a small Getting Started with Scratch Boards PDF manual, which provides a
number of excellent example scripts that demonstrate how to interact with and use input col-
lected and reported by Scratch Boards.

Buying a Scratch Board
Scratch Boards can only be purchased from the Scratch website. At the time this

book was written, the price of a Scratch Board was $25, along with an additional

$5 charge for shipping and handling. To verify the current price of a Scratch

Board, visit http://scratch.wik.is/Support/Scratch_Board/Pricing_information.

To order a Scratch Board, go to https://scratch.media.mit.edu/pages/scratchboard-

purchase and fill out the required form.

Installing Your Scratch Board
Installing a Scratch Board on your computer is a relatively quick and easy process

and begins with downloading the software driver. Two different types of software

driver downloads are available, one for Microsoft Windows and one for Mac OS

X. To download the drivers for your computer, go to http://scratch.mit.edu/

pages/scratchboardsetup and click on one of the following links (Windows Vista

users can skip this step because your computer should automatically install the

needed software driver):

n Windows XP (and older) Driver

n Mac OS X Driver

Once you have downloaded the appropriate software driver for your computer,

you need to install it. On Microsoft Windows this means extracting the instal-

lation program from the Zip file, double-clicking on it, and then following the

instructions that are provided.

Installing Your Scratch Board 269

http://scratch.wik.is/Support/Scratch_Board
http://scratch.wik.is/Support/Scratch_Board/Pricing_information
https://scratch.media.mit.edu/pages/scratchboardpurchase
https://scratch.media.mit.edu/pages/scratchboardpurchase
http://scratch.mit.edu/pages/scratchboardsetup
http://scratch.mit.edu/pages/scratchboardsetup

ForMac OS X users, installing Scratch’s software drivers involves opening the file

that is downloaded and then double-clicking on the .dmg file that is stored

inside. This displays a .pkg program, which when double-clicked executes the

driver installation process. Click on Continue to begin the installation process

and then follow the instructions that are presented.

Once you have installed the software driver on your computer, connect the USB

portion of the cable that came with your Scratch Board to your computer’s USB

port and then connect the serial portion of the cable to your Scratch Board. At

this point your Scratch Board should be ready to use.

Using the Sensor Block to Interact with
Your Scratch Board
In order to programmatically interact with a Scratch Board, you need to work

with the two sensing code blocks shown in Figure 14.2.

The first code block shown in Figure 14.2 returns a range of data, from 1 to 100,

for the selected Scratch Board sensor. In addition, you can select this code block’s

check box to enable the display of a monitor on the stage, allowing you to keep

track of the data that the sensor is returning. This code block works with the

slider, light, sound, and all four of the resistance controls (alligator clips).

The second code block shown in Figure 14.2 returns a value of true or false,

depending on whether the Scratch Board’s button control has been pressed or

one of the resistance controls has been used to establish an electrical connection

(the alligator clips are connected to one another).

Examples of how to work with both of these sensing code blocks to receive data

collected by each of the Scratch Board’s sensors and controls are provided

throughout the rest of this book.

Collecting Input Using the Slider Control

In order to work with the Scratch Board’s slider control, you must use the first

sensing code block shown in Figure 14.2. This means dragging and dropping an

270 Chapter 14 n Collecting External Input Using a Scratch Board

Figure 14.2
Access to a Scratch Board is provided through these two sensing code blocks.

instance of the code block into another control, where it can be used to provide

input; then select Slider from the list of choices displayed in the control’s drop-

down list.

As an example of how to work with the control, let’s create a new Scratch

application that emulates a virtual fan. To do this, you will create a new appli-

cation and then import the sprite shown in Figure 14.3 into it. You will find a

copy of this spite on the book’s companion CD-ROM. You will also need to

remove the default Cat sprite.

Once added to your application, select the sprite and then add the following

script to it. As you can see, this script places the sprite representing a fan in the

middle of the stage and then uses a loop to retrieve a continuous feed of data

from the Scratch Board’s slider control. Using this data collected from the

Scratch Board as input, a motion block is used to rotate the sprite.

The sprite has been set up so that its rotational center is directly in the center of

the black circle in the middle of the sprite. Moving the slider by a small amount

will make the fan begin to slowly spin. Moving the slider control by a larger

amount will increase the speed at which the fan spins. Using a similar approach,

you can use a Scratch Board as an input device for all kinds of Scratch appli-

cations. For example, you might use it as a means of controlling a paddle in a

Breakout-style game or to control the assignment of data to a variable, which in

turn is used to control an application’s operation. The possibilities are endless.

Using the Sensor Block to Interact with Your Scratch Board 271

Figure 14.3
The speed at which the fan spins will be controlled by the Scratch Board’s slider control.

Using the Button Control to Initiate Action

In order to work with the Scratch Board’s button control, you must use the first

sensing code block shown in Figure 14.2. Using this code block, you can

determine whether the Scratch Board’s button control is being pressed. As an

example, let’s create another application. Begin by removing the default Cat

sprite and then click on the Choose New Sprite from File button, drill down into

the Things folder, select the basketball sprite, and click on OK.

Once it is added, select the basketball sprite and add the following script to it:

As you can see, this script begins by positioning the sprite at the center of the

stage. It then starts a loop to repeatedly execute a conditional code block that

checks to see if the Scratch Board’s button is being pressed. If this is the case, the

statements located inside the condition code block are executed. As a result, the

image of the basketball is made to bounce. Figure 14.4 depicts how the basketball

looks as it begins its upward bounce.

The basketball will repeatedly bounce for as long as the Scratch Board’s button is

being pressed and will stop bouncing as soon as the button is released. Using the

previous example as a starting point, you should be able to use a Scratch Board’s

button control as an input device for all kinds of Scratch applications. For

example, you might use it in place of the mouse button as a means of controlling

when to shoot a missile in a Space Invaders-style game.

Reacting to Light

In addition to the slider and button control, you can retrieve input from the light

sensor located on your Scratch Board to provide input to your applications. You

272 Chapter 14 n Collecting External Input Using a Scratch Board

Figure 14.4
Using the Scratch Board’s button to control the bouncing of a virtual basketball.

can use either of Scratch’s two sensing code blocks to interact with the light

sensor. To get a better feel of how to work with the light sensor, let’s modify the

previous application so that it responds to a change in light in place of the Scratch

Board’s button control. To do so, modify the application’s script as shown here.

As you can see, the script has been redesigned so that it only bounces the bas-

ketball when the Scratch Board’s light sensor returns a value of 0 (total darkness).

To test out the execution of this script, place your hand over the Scratch Board so

that it blocks out the light. When you do, the basketball should start bouncing.

Remove your hand so that the Scratch Board can detect some light, and the

basketball will stop bouncing.

Using this example as a starting point, you could create a Scratch application that

performs a certain task only when the lights have been turned off or on. You

might also use your Scratch Board as the basis for creating an alarm clock that

awakens you when the sun comes up.

Responding to Sound

In addition to providing your application with data based on the amount of light

it is able to detect, your Scratch Board can also detect variations in the loudness

of sounds. For example, you could easily modify the script belonging to the

application that you have been experimenting with to work with sound in place

of light.

As redesigned, the script will now bounce the basketball only when the Scratch

Board detects a relatively loud noise in the room. The sound sensor returns a

range of numbers from 1 to 100, where 0 represents total silence, and 100

represents maximum volume. To see how this change affects your application,

Using the Sensor Block to Interact with Your Scratch Board 273

start your application and make a little noise. If the basketball does not move,

make another noise, this time a little louder. Keep going until you make a noise

that is loud enough to trigger the bouncing of the basketball.

No t e

The sensing code block shown in the preceding example operates much like the sensing code
block shown here.

Unlike this code block, which reports on the loudness of the computer’s microphone, the sensing
code block used in the example retrieves its data directly from the Scratch Board’s microphone.

Using sound as a trigger for script execution, you could, for example, create and

execute an application that plays an alarm whenever it detects someone in your

room, warning him that his presence has been detected, thus creating your own

virtual watch dog.

Measuring Electrical Resistance

In addition to working with the Scratch Board’s slider, button, light sensor, and

sound sensor, the Scratch Board also comes equipped with four sets of alligator

clips, which you can attach to the bottom of the Scratch Board. Each set of

alligator clips represents an individual sensor, which you can use to provide your

applications with input based on the strength of the electrical resistance in any

circuit you set up.

As an example of how you might work with an alligator clip, let’s modify the

script for the application that you have been experimenting with, as shown here:

With this modified script now in place, you must touch both ends of the alligator

clips together in order to make the basketball bounce. To test how well different

materials conduct electricity, you could attach both ends of the alligator clips to

different objects to see if enough current passes through to make the basketball

274 Chapter 14 n Collecting External Input Using a Scratch Board

bounce. With access to four separate sets of alligator clips, you can create all sorts

of different tests and even run them all at once.

Keeping a Watchful Eye on Sensor Data

Scratch allows you to display individual monitors for each of the different types

of sensor controls supported by either of the two sensing code blocks that work

with the Scratch Board. To do so, click on the Sensing button located at the top of

the blocks palette, then click on the drop-down list located in the sensing code

block you plan on working with and select the sensor that you want to keep an

eye on. Next, select the check box located just to the left of the code block. A

monitor for the selected Scratch Board sensor will then appear on the stage. If

you want to display additional monitors, you may do so by selecting the code

block’s drop-down list again to select a different sensor. You will have to select

the block’s check box again. Using this approach, you can display a monitor for as

many of the Scratch Board’s sensors as you want, as demonstrated in Figure 14.5.

To disable the display of any monitor that you enable, you must perform the

procedure outlined above in reverse order to clear out the check box for each

sensor. A quicker and easier way of keeping an eye on the data being supplied by

multiple sensors is to enable the display of the Scratch Board Watcher, as shown

in Figure 14.6.

To enable the display of the Scratch Board Watcher, right-click on the sensing

code block that you plan to use and select Show Scratch Board Watcher from the

Using the Sensor Block to Interact with Your Scratch Board 275

Figure 14.5
Displaying individual monitors to report on different Scratch Board sensors.

popup menu that is displayed. When you are done with the Scratch Board

Watcher, you can remove it from the stage by right-clicking on it and selecting

Hide from the popup menu.

Summary
In this chapter, you learned all about Scratch Boards. This included learning how

to purchase and install them. You learned how to programmatically interact with

them using sensing code blocks and saw examples of how to work with all of the

Scratch Board’s controls and sensors. These examples included the creation of

scripts that can react to changes in light and sound level as well as to button

presses, slider bar movement, and changes in electrical current. This chapter also

demonstrated how to work with different monitors that allow you to keep track

of the data being collected and reported by your Scratch Board.

276 Chapter 14 n Collecting External Input Using a Scratch Board

Figure 14.6
The Scratch Board Watcher lets you keep track of all of the data being supplied by your Scratch Board.

Finding and Fixing
Program Errors

Compared to most programming languages, Scratch is less prone to many types

of programming errors, often referred to as bugs. As a programmer, your job is to

seek out and remove all of the programming bugs from your applications and to

ensure that they operate as they are supposed to. That’s where this chapter comes

in. By the time you are done reading it, you will have a solid understanding of

the types of errors that Scratch is susceptible to and the basic steps involved in

tracking down and fixing them. In addition, you will learn about different

resources that you can turn to in order to get help.

The major topics covered in this chapter include:

n Understanding the differences between syntax, logical, and run-time errors

n Learning how to run applications in single stepping mode

n Accessing code block help

n Getting help from the Scratch global community

Dealing with Application Errors
Program errors, sometimes referred to as bugs, are a programmer’s number one

problem. Errors can occur for a number of different reasons and can cause your

applications to misbehave or even prevent them from executing at all. As your

projects inevitably get larger and more complex, the possibility and frequency of

errors also increase. That’s just the way it is.

277

chapter 15

278 Chapter 15 n Finding and Fixing Program Errors

The goal of this chapter is to help you gain an understanding of the different

types of errors that you will run into and provide you with guidance on how to go

about locating and eliminating them from your applications. Some errors are

easy to find, especially in small scripts, while others can be quite challenging to

locate and often can only be found through intense testing and debugging.

Fortunately, there are steps that you can take to reduce the number of errors that

occur in your applications. For starters, take a little extra time to plan out the

design of your applications rather than making things up as you go along.

Another important step is to create your application scripts a few code blocks at a

time, frequently testing as you go along, rather than waiting until your entire

application has been built to see how things work. In addition, you should set

aside a little extra time at the end of the development process just for testing your

applications and making sure that they not only meet your expectations but do

so without generating any errors.

In addition to the programming practices discussed above, there are a number of

other steps that you can take to make sure your Scratch applications work like

you want them to. These steps include:

n Taking a little extra time to carefully design and lay out your application’s

interface

n Ensuring that you provide clear instructions on how to properly work with

your application

n Creating descriptive names for all application variables

n Renaming all the sprites, sounds, and costumes used in your application to

make them more intuitive to work with

n Breaking down programming logic into a number of manageable small

scripts as opposed to a few really large ones

Unfortunately, no matter how much you try, you can never totally avoid all of the

different types of errors that Scratch applications are susceptible to. Broadly speaking,

most programming languages are susceptible to the following types of errors:

n Syntax errors

n Logical errors

n Run-time errors

Each of these three types of errors is discussed in the sections that follow.

Dealing with Application Errors 279

Understanding Syntax Errors

One of the things that makes Scratch unique among programming languages

is the way it prevents syntax errors. A syntax error is an error that occurs when

a programmer fails to write code statements in a manner that follows the

syntax rules specified by the programming language. Scratch code blocks are

designed to fit together in logical ways like pieces in a puzzle. Scratch only

allows you to snap together blocks in ways that make syntactic sense. As a

result, Scratch eliminates syntax errors that proliferate in other programming

languages.

Keeping an Eye Out for Logical Errors

One category of errors you need to worry about regardless of the programming

language you are working with is logical errors. A logical error is an error that

occurs because of a mistake on your part in the implementation of the pro-

gramming logic you applied to solving a problem or performing task. For

example, suppose you had an application that needed to add two numbers

together, but when you assembled the programming logic you accidentally

subtracted one number from another. As a result, your application will not run

correctly. From Scratch’s perspective, everything would be fine, since there was

technically no problem with the logic you implemented. As soon as you see that

the results tallied by the application are not correct, you should immediately

suspect that you have a logical error to debug.

As another example of a logical error, consider the following pair of scripts, which

belong to an application that uses the default Cat sprite to display text messages

that are supposed to count from 1 to 5.

Both scripts begin their execution when the green flag button is clicked. When

this happens, the first script assigns a starting value of 0 to a variable named

Counter and then goes into a loop that has been set up to wait until the value of

Counter is equal to 5. When this occurs, the sprite is made to display a message,

and then all script activity within the sprite is halted.

The second script is responsible for making the sprite count from 1 to 5,

incrementing the value of Counter each time the sprite says a number. If you were

to run this example, you would see that as it is currently written, it has a logical

error. Specifically, the second script loop was accidentally set up to run four times

instead of five times. As a result, the sprite only counts from 1 to 4, and since the

value of Counter never reaches 5, the first script gets stuck in its loop. Only by

fixing the loop in the second script (so that it executes five times) can this logical

error be fixed.

The best way to identify logical errors is to take a little extra time to carefully plan

out the design of your applications and to test them extensively, ensuring that

they run exactly as you expect them to. If, despite your best efforts, a logical error

manages to make its way into your program logic, all hope is not lost. Using the

debugging techniques discussed later in this chapter, you should be able to track

down and eliminate all of the errors from your Scratch applications.

Tracking Down Run-Time Errors

A third category of errors that plagues all programming languages, including

Scratch, is run-time errors. A run-time error is an error that occurs when a Scratch

script attempts to perform an illegal action. Scratch automatically identifies run-

time errors when they occur by surrounding the script where the error occurred

with a red outline. Depending on how your applications are designed, it is entirely

possible that you might be able to run them over and over again without ever

executing the script in the application where a run-time error lies. This is why it is

so important that you thoroughly test the execution of every script in your

applications. Failure to do so leaves you open to run-time errors.

As an example of what a run-time error looks like when reported by Scratch, take

a look at the following script.

280 Chapter 15 n Finding and Fixing Program Errors

Here, Scratch has flagged the script as having a run-time error. The reason for the

error resides in the Variable code block. As you can see, it includes an embedded

Numbers block that attempts to divide 10 by 0. However, the division of 10 by 0 is

an illegal action in all modern programming languages, including Scratch.

The unfortunate thing about run-time errors is that if you do not identify and

eliminate them during application development, you can bet that your users will

find them for you, which is the last thing any programmer wants to happen.

Debugging Your Scratch Applications
No matter how carefully you plan out your Scratch scripts, somewhere along the

line you are going to run into errors. As previously demonstrated, Scratch helps

you locate and identify scripts that contain run-time errors, and while your

Scratch applications are not subject to syntax errors, logical errors can be par-

ticularly difficult to track down and identify. Fortunately, there are a number of

debugging techniques that you can employ to help you track down and eliminate

problems within your application’s scripts.

Basic Debugging Techniques

One of the challenges in debugging a Scratch application is to identify when

things are happening. Scratch helps simplify this challenge a bit by highlighting

scripts when they execute. However, the exact activity occurring within a given

script can be hard to identify. This makes it difficult to determine if things are

occurring in both the order and manner that you intend for them to.

Making a Little Noise

Once way of figuring out what is happening within an application is to embed

code blocks inside your scripts for the purpose of notifying you when things

occur. For example, using a sound block you could play a note every time a

particular variable is updated during the execution of your script. Using this

sound as a means of keeping track of updates, you could verify that a variable’s

value is being properly set when testing the application. If during testing you do

not hear the sound played, then you know that something is wrong. If the

variable that you are watching is modified in more than one place within a script,

or if it can be modified by different scripts, youmight want to play different notes

at each location where variable modifications occur. Then by simply keeping

Debugging Your Scratch Applications 281

your ears open when testing the execution of your application, you may be able

to track down the script or area where the problem lies.

Display Informative Messages

Of course, you do not have to work with sound blocks. If you prefer to, you can

work with looks blocks instead. Looks blocks provide the added benefit of being

able to display text, which you can use as marker within script execution to let you

identify exactly when certain parts of a script are executing. For example, you

might begin each script with a looks block that displays a text message announcing

that the script is executing and end each script by displaying a closingmessage. You

might embed additional looks blocks at key locations within your script to notify

when specific things happen. If, for example, when testing an application, a par-

ticular text message is not displayed when you expect it to be, then you will know

where to begin looking for the source of the problem.

T i p

If you think that a variable is not being set correctly during script execution, you can enable the
display of a monitor so that you can keep your eye on the variable’s assigned value when testing
your application. However, if your application utilizes a larger number of variables, displaying lots
of monitors can get in the way of things. As an alternative, you can keep an eye on the value of a
variable by displaying it inside a looks blocks, as demonstrated in Figure 15.1.

Although not obvious because of the shape of some looks blocks’ input fields, you can use them
as shown above to display a variable’s value.

Slowing Things Down

Because of the speed at which things tend to happen inmany applications, it can be

difficult to keep track of what is going on. If you are using looks blocks to display

helpful text messages, you can slow things down by pausing script execution for a

specified number of seconds. Alternatively, you can also slow things down by using

the control block shown in Figure 15.2 to pause script execution.

By temporarily halting a script, you can give yourself time to check on variable

values to see if they have been correctly set and poke around and look at the

282 Chapter 15 n Finding and Fixing Program Errors

Figure 15.1
Using a looks block to report on a variable’s assigned value.

activity of other scripts. This is especially helpful in applications made up of

multiple scripts and scripts where broadcast messages and variables are used to

coordinate the execution of script activity.

Testing Individual Scripts

When testing your Scratch applications, it is important that you make sure that

every script gets executed. Otherwise, you may miss out on finding a potential

problem. To make sure this happens, take time to test all of the functionality and

features of your applications. One easy way to do this is to double-click on every

script in your application and observe the effects of its execution.

Breaking Things Down into Smaller Pieces

Really large scripts can be challenging to test because of their size and inherent

complexity. One easy way of getting around this challenge is to break these scripts

down into smaller parts when individually testing them. As an example of how

you might do this, take a look at Figure 15.3.

Debugging Your Scratch Applications 283

Figure 15.3
Testing a script by breaking it down into smaller parts.

Figure 15.2
You can use this code block to slow down script execution.

By breaking down a script like the one in Figure 15.3 into multiple parts, you can

double-click on each part and examine its effects on your application. Should

something unexpected occur, you will know exactly which part of your script to

focus on to find the source of an application’s problem.

Making Liberal Use of Monitors

Another important source of information at your disposal that you can use when

debugging your application is code block monitors. By temporarily enabling

the display of monitors when testing your applications, you can keep track of key

data used by your applications. Once you are done testing, you can disable the

display of any monitors that you do not need to display as part of the normal

operation of the application.

Running Your Application in Single Stepping Mode

In addition to all of the debugging techniques discussed above, Scratch provides

one additional debugging tool, known as single stepping. When you run an

application using single stepping mode, Scratch slows down the speed at which

your application executes, making it easier for you to monitor execution flow.

Normally the Scratch IDE highlights an entire script with a white outline when it

executes. But when run in single stepping mode, Scratch also highlights individual

code blocks as they execute. As your applications execute in single stepping mode,

you can monitor their execution flow to determine if things are executing in

the proper order.

No t e

You can control the speed at which your application executes by pressing the Shift key and left-
clicking on the Extras button, then clicking on Set Single Stepping from the popup menu that
appears. This displays a list of options to control single stepping execution speed. These choices
include:

n Turbo Speed

n Normal

n Flash blocks (fast)

n Flash blocks (slow)

284 Chapter 15 n Finding and Fixing Program Errors

To develop a better understanding of how single stepping works, consider the

following series of examples, which demonstrate what you can expect to see when

running an application in single stepping mode.

To turn on single stepping mode, click on the Extras button located at the top of

the IDE and then click on the Start Single Stepping option from the popup menu

that appears. Once single stepping has been enabled, go ahead and start running

your application. As the application executes, two things become immediately

obvious: Things are occurring more slowly, and in addition to highlighting each

script with a white outline as it executes, Scratch now highlights individual code

blocks as they execute.

Below is an example of a script that has begun executing, as indicated by the

white outline that surrounds the script. Within the script, you can see that the

second code block is the code block that is currently executing because Scratch

has highlighted it using a yellow color.

Normally, Scratch runs scripts so quickly that it would not be practical to try

to monitor the execution of individual code blocks. However, single step-

ping slows things down enough to let you do so. For example, as shown

below, you can clearly see that the fourth code block is now being executed.

If you have a monitor for the Counter variable displayed on the stage, you

would be able to confirm that the code block has correctly modified the

variable value.

Debugging Your Scratch Applications 285

Within a few moments, the script enters into a loop and begins the repeated

execution of two code blocks. Below you can see how the script looks when the

first of these two code blocks is executed. As you can see, this code block rotates

its sprite by 10 degrees. You should be able to observe this movement by

watching the sprite on the stage.

After a brief pause, the second of the two code blocks in the loop executes, as

shown here.

286 Chapter 15 n Finding and Fixing Program Errors

Scratch continues to highlight code blocks one at a time for as long as

the script executes, giving you the opportunity to validate that the script is

executing exactly as you expect it to and that variables are being modified

as you want. If while monitoring script activity you see something happen that

you do not expect, you can halt application execution, knowing exactly where

the problem lies.

As your application executes in single steppingmode, you can also keep an eye on

variable values, ensuring that they are being properly set and modified as you

expect them to. You can also switch between sprites and observe other scripts,

which will also be executing in single stepping mode.

H i n t

Although single stepping is a very helpful debugging tool, it lacks many of the features that are
usually included in debugging tools provided by most modern programming languages. For
example, it lacks the ability to set breakpoints, which pause execution when certain code
statements are reached, giving programmers the ability to access an application’s status before
allowing the application to continue its execution. Still, single stepping serves its purpose well,
and when combined with the debugging techniques covered in this chapter, it should be more
than sufficient to help you track and fix any application bug.

Watch Out when Removing Sounds and Sprites
Unlike many programming languages, Scratch is extremely forgiving when it

comes to what in many programming languages would be considered a major

error. For example, let’s say you created a script that played an audio file named

Watch Out when Removing Sounds and Sprites 287

meow, as demonstrated below, and you later decided to remove the audio file from

your application but forgot to remove the sound block in the script. It would

certainly be logical to expect that when you ran your application, an error would

occur. But this will not be the case.

Rather than preventing application execution and highlighting the error, Scratch

overlooks the problem and runs your application anyway. When it comes time to

play the missing audio file, scratch just ignores the problem. This behavior can be

a double-edged sword, because on the one hand your application still runs.

However, unless you carefully test the execution of your application after

deleting the sound file, you may not discover the error, and the overall quality of

your application will suffer.

Scratch is just as forgiving when it comes to the management of sprite costumes.

Suppose, for example, that you added a costume named bat1-a to a sprite and

then used the following script to switch its costume:

If sometime down the road you decided to modify your application by removing

the costume from the sprite, Scratch would not flag the oversight as an error and

would instead allow your application to run, ignoring the costume switch error

when it came across it. Again, this type of behavior is a double-edged sword and

can only be overcome by careful modification and retesting of your Scratch

applications any time you decide to change or remove a sound, costume, or

background.

Getting Help
The development of good debugging skills is an absolute requirement for any

serious programmer. However, no matter how good you may be at debugging,

there are going to be times when you may need additional help in finding the

answer to a particular problem or challenge. Fortunately, there are a number of

resources that you can turn to for assistance, both within Scratch and online, as

discussed in the following sections.

288 Chapter 15 n Finding and Fixing Program Errors

Referring to Scratch’s Online Help

One source of help that you can turn to with the click of a button is the Scratch

Help web page, which you can access by clicking on the Want Help? button

located at the top of the Scratch IDE. When clicked, Scratch opens your default

browser and loads the web page shown in Figure 15.4.

On this web page you will find links to a number of helpful resources, including

links that let you open Scratch’s Getting Started and Reference Guide PDF

manuals as well as its support page. The support page contains additional links to

online videos, Scratch Cards, and other information. Also available on the web

page is a link labeled Help Screens, which when clicked displays a listing of help

screens, as shown in Figure 15.5, each of which is designed to teach you how to

work with an individual Scratch code block.

The help screens are organized by category. Using links provides at the top of the

web page, you can jump to specific categories of help screens.

Getting Help for Individual Code Blocks

An even faster way of accessing Scratch help screens is to view them one at a

time on an as-needed basis without having to go through the Internet to view

Getting Help 289

Figure 15.4
Online help is just a single click away.

them. To view the help screen for an individual code block, right-click on the

code block and then click on the help option that appears in the resulting

popup menu. For example, Figure 15.6 shows the help screen for one of the

sensing blocks.

290 Chapter 15 n Finding and Fixing Program Errors

Figure 15.5
Using the Help Screen links, you can quickly view help information for all of Scratch’s code blocks.

Figure 15.6
An example of a typical help screen.

In this particular example, the help screen demonstrates the code block’s usage

and provides an example that further demonstrates the effect of using the code

block. In addition, more information is provided at the bottom of the help screen

that shows all of the code block’s available options.

Getting Help from Other Scratch Programmers

In addition to the documentation made available to you through Scratch’s help

screens, the Scratch website also sponsors a collection of forums that bring

together Scratch programmers from around the world. These forums facilitate

the free exchange of ideas and provide you with the opportunity to seek out help

and advice from fellow Scratch programmers. As shown in Figure 15.7, you can

access these forums by going to http://scratch.mit.edu/forums.

T i p

If all else fails and you simply cannot find an answer to a particular problem, you can try sending
an email to the Scratch developers by going to http://scratch.mit.edu/contact/us and filling in the
email form that is provided. When doing so, provide as much information as possible about your
problem and the steps that you have taken in trying to fix it.

Getting Help 291

Figure 15.7
The forums are organized into a number of high-level categories, including a forum dedicated to
discussing troubleshooting.

http://scratch.mit.edu/forums
http://scratch.mit.edu/contact/us

By posting your questions to the appropriate forum, you can tap into the

expertise and experience of other Scratch programmers. Often, you can find an

answer to your problem without having to post a question at all. Answers can

often be found in threads already posted by other Scratch programmers.

Figure 15.8 shows an example of types of discussions you will find when you

visit the Scratch website’s forums.

Summary
This chapter taught you about the different types of errors to which Scratch

applications are susceptible and examined a number of different ways in which

pesky application bugs can be tracked down and eliminated. This included

learning how to run your application in stepping mode so that you can monitor

the execution of the logical flow within your application while also keeping a

watchful eye on variable values. You also learned how to access help from dif-

ferent sources, including the forums sponsored on the Scratch website, where

you can receive help from Scratch programmers around the world.

292 Chapter 15 n Finding and Fixing Program Errors

Figure 15.8
Scratch forums provide the ability to interact with and learn from other Scratch programmers.

Appendices

Part IV

This page intentionally left blank

What’s on the Companion
CD?

As you continue to learn more about Scratch and improve your programming

skills, it helps to have access to a good collection of source code that you can

reference. This book has provided you with numerous sample Scratch applica-

tion projects. By studying these projects, you can learn a lot about how to

program. You can also use this book to find working examples of how to perform

different types of tasks and use them as the basis for creating new Scratch

application projects. This will not only save you time, but it will also keep you

from having to re-invent the wheel and let you keep your focus on tackling new

programming challenges.

If you have been faithfully re-creating all of the Scratch application projects

presented in this book, then you already have access to such a collection of

sample projects. However, if you skipped around a bit, then youmay have missed

a few sample projects. You will be happy to know that all of the sample Scratch

projects covered in this book are available at your fingertips on this book’s

companion CD.

Scratch Project Source Code
You will find copies of the source file for all of the Scratch projects developed in

this book on the companion CD. You will also find copies of any custom graphics

and audio files required to build projects. Table A.1 provides a complete list of

each of the Scratch project source code files that you will find on the CD.

295

appendix a

You will also find each of these projects published on the Scratch website at

http://scratch.mit.edu/ in the Scratch Programming for Teens gallery.

No t e

In addition to all of the sample applications listed in Table A.1, you will also find a bonus
application named Scratch Pong on the book’s CD-ROM. You will not find this application on the
Scratch Programming for Teens gallery at the Scratch website.

Scratch Installation Files for Microsoft Windows
and Mac OS X
In addition to all of this book’s sample projects, you will also find the installation

files needed to install Scratch version 1.2.1 on either Microsoft Windows or Mac

OS X on the book’s companion CD-ROM.

296 Appendix A n What’s on the Companion CD?

Table A.1 Scratch Projects Available on the Companion CD

Chapter File Name

Chapter 1 Hello World.sb

Chapter 4 My. Wiggly’s Dance.sb

Chapter 5 Fish Tank.sb

Chapter 6 Family Scrapbook.sb

Chapter 7 Basketball Quiz.sb

Chapter 8 NumberGuess.sb

Chapter 9 Ball Chase.sb

Chapter 10 Crazy Eight Ball.sb

Chapter 11 Family Picture Movie.sb

Chapter 12 Doodle.sb

http://scratch.mit.edu/

What Next?

Learning how to become a good programmer takes time and effort. It means

putting in the hours necessary to learn the fundamental techniques involved in

developing computer application projects. Scratch provides an excellent plat-

form for getting started. It provides a friendly and fun environment in which to

learn. A good understanding of Scratch programming will prepare you to make

the jump to other programming languages like Visual Basic, AppleScript, Cþþ,

and so on.

Learning Scratch requires commitment. By making your way through to the end

of this book, you have demonstrated this commitment. Although this book has

certainly taught you a lot about Scratch and programming in general, there is still

much more to be learned.

To become a world-class programmer, you need to continue your programming

education. You need to continue to experiment and learn as much as you can

about Scratch. Do not think of this book as the end of your Scratch programming

education. Instead, think of it as the beginning. Over the coming weeks and

months, you should continue developing new Scratch projects. You should also

keep an eye on the different forums hosted on the Scratch website to learn from

the experiences of others. Better yet, consider becoming an active member of the

Scratch community.

297

appendix b

To help you further your understanding of Scratch and to become a better

programmer, this appendix provides a list of websites and supplemental reading

materials that you can turn to as you continue to develop and hone your pro-

gramming skills.

Locating Scratch Resources Online
As you would expect, there is an awful lot of helpful information on the Internet

about Scratch. By frequenting the websites discussed in the sections that follow,

you can keep abreast of the latest happenings in the Scratch community while

also keeping your Scratch programming knowledge and skills up to date.

The Scratch Website

The most informative and helpful Scratch website is the Scratch site developed

and maintained byMIT located at http://scratch.mit.edu, as shown in Figure B.1.

This site is packed with helpful information, including documentation, video

tutorials, and forums where you can go to interact with and learn from other

Scratch programmers from around the world. Best of all, this site provides

instant access to tons of Scratch projects, all of which you can download,

experiment with, and learn from.

298 Appendix B n What Next?

Figure B.1
The official home page of the Scratch programming language.

http://scratch.mit.edu

The Lifelong Kindergarten Website

Another website that is certainly worth visiting is the Lifelong Kindergarten MIT

Media Lab site located at http://llk.media.mit.edu/, as shown in Figure B.2.

This site includes information about Scratch, including links to various papers

about Scratch.

The Wikipedia Scratch Page

Another excellent source of Scratch information is the Wikipedia Scratch page

located at http://en.wikipedia.org/wiki/Scratch_%28programming_language%29,

as shown in Figure B.3.

Here you can find information on Scratch, its origins and creator, as well as its

development environment and website. In addition, you will also find plenty of

links to papers about Scratch.

The Programming Page at the Thornburg Center Website

If your operating system of choice is Linux, you will be pleased to know that an

official Linux version of Scratch is in the works. In the meantime, if you cannot

wait, you can download a free user implementation of Scratch at http://

tcpdpodcast.org/scratch.html, as shown in Figure B.4.

Locating Scratch Resources Online 299

Figure B.2
Scratch is developed by the Lifelong Kindergarten Group at MIT.

http://llk.media.mit.edu/
http://en.wikipedia.org/wiki/Scratch_%28programming_language%29
http://tcpdpodcast.org/scratch.html
http://tcpdpodcast.org/scratch.html

You will find all of the instructions you need to download and install Scratch on

Linux at this site. Although it does not support Scratch’s Presentation mode, this

Scratch implementation provides most of the programming features currently

available in the Windows and Mac OS X versions of Scratch.

300 Appendix B n What Next?

Figure B.3
The Scratch page located at www.wikipedia.org.

Figure B.4
Downloading a free copy of Scratch for Linux.

www.wikipedia.org

The Scratch Resources Website

Another useful website dedicated to Scratch is the Scratch Resources website

located at http://resources.scratchr.org/pages/, as shown in Figure B.5.

This sites provides free access to a growing collection of sprite and sound files,

which you are invited to download for free, provided you reference the Scratch

Resources website in your Scratch project’s credits. In addition to sprite and

sound files, you will also find video tutorials designed to help you learn more

about programming with Scratch.

Recommended Reading
In addition to the websites previously discussed, you can learn a lot about Scratch

by reviewing documentation available on the web. This documentation is

available electronically. A brief description of some particularly useful docu-

ments, including their locations, is listed here.

n Getting Started with Scratch. This 14-page PDF file provides a step-by-step

guide to Scratch, demonstrating its basic operation and many of its cap-

abilities. This document can be downloaded from the Support page at the

Scratch website (http://scratch.wik.is/Support).

Recommended Reading 301

Figure B.5
You can download free sprite and sound files from the Scratch Resources website.

http://resources.scratchr.org/pages/
http://scratch.wik.is/Support

n Scratch Reference Guide. This 17-page PDF file provides detailed

information about the Scratch graphical interface, its Paint Editor

program, and a detailed overview of each of the Scratch blocks. This

document can be downloaded from the Support page at the Scratch

website (http://scratch.wik.is/Support).

n Getting Started with Scratch Boards. This nine-page PDF file provides an

overview of Scratch Boards and detailed explanations of how to work

with its many different features. It also provides troubleshooting advice.

This document can be downloaded from the Scratch Board page

at the Scratch website (http://scratch.wik.is/Support/Scratch_Board).

n An Introduction to Scratch. This online book is available as a Wikibook

through www.wikipedia.org. At the time of writing, the Wikibook was

still a work in progress. However, it was already well underway and

contained a growing collection of programming information about

Scratch. This document can be read online at Wikibooks by visiting

http://en.wikibooks.org/wiki/Scratch/Lessons.

302 Appendix B n What Next?

www.wikipedia.org
http://en.wikibooks.org/wiki/Scratch/Lessons
http://scratch.wik.is/Support/Scratch_Board
http://scratch.wik.is/Support

Actor. A term used to refer to sprites and the role they play as they interact with
one another on the stage.

Animated GIF. A graphic is made up of two or more frames, each of which is

displayed as an automated sequence when the GIF file is displayed.

Boolean. A term used to represent data that has either of two values, true or false.

Brightness. The application or restriction of the intensity of light in a graphic

image.

Broadcast Message. An electronic message sent between sprites as a means of

coordinating application activity.

Code Block. A graphical command used in the creation of a script.

Collision. An event that occurs whenever two sprites come into contact with

one another on the stage.

Compression. The process of reducing the size of sound and graphics files in

order to reduce the overall size of Scratch applications.

Conditional Logic. The process of executing sets of code blocks based on

whether or not a tested condition proves true.

Costumes. Images that are used to represent a sprite on the stage.

303

Glossary

Data. A piece of information collected, stored, modified, and processed during

application execution.

Debugger. A program or utility that can be used to execute an application

within a special environment that allows programmers to slow and monitor

the execution of an application’s script as it runs.

Decimal. A floating point or real number.

Endless Loop. A loop that does not have a means for terminating its execution.

Event Handling. The process of initiating script execution based on the

occurrence of predefined events, such as a mouse click, the pressing of a

keyboard key, or the clicking of a sprite.

Fisheye. A graphic effect that can be applied to a sprite or background in order

to magnify a portion of its image.

Ghost. A graphic effect that fades the appearance of a costume or background,

making it look transparent.

Global Variable. A variable that can be modified by any script in an application.

Gradient. A color created by blending together the foreground and background

colors.

Hat Block. A code block that creates event-driven scripts.

IDE (Integrated Development Environment). A graphical application devel-

opment environment designed to facilitate program development.

Integer. An absolute or whole number that does not have a decimal point.

Java. A popular web-based programming language that is a prerequisite for

executing a Scratch application on the Scratch website.

Local Variable. A variable that can be modified only by scripts belonging to the

sprite in which the variable is defined.

Logical Error. An error created by a mistake made by the programmer when

developing the logic implemented by a script.

Looks Blocks. Code blocks that affect sprite and background appearance and

display text.

Loop. A collection of one or more code blocks that are repeatedly executed.

Monitor. A small block that displays the value currently assigned to the code block.

Mosaic. A special graphic effect that creates an image made up of repeated

instances of a sprite or background.

304 Glossary

Glossary 305

Motion Blocks. Code blocks that control sprite placement, direction, rotation,

and movement.

MP3. An audio file that utilizes advanced compression technology while

retaining high audio quality.

Nest. The process of embedding one set of code blocks within another set of

code blocks.

Numbers Blocks. Code blocks that perform mathematical operations, logical

comparisons, rounding, and other arithmetic operations.

Order of Precedence. The set of rules that is followed when evaluating a numeric

expression.

Paint Editor. A Scratch program that supports the creation of graphics files to

be used as the basis for creating and modifying sprites and backgrounds.

Pen. A virtualized drawing tool that can be used to draw on the stage.

Pen Blocks. Code blocks that can be used to draw using different colors and

pen sizes.

Pixelate. A special graphic effect that displays a sprite or background at a lower

resolution than the resolution at which it was created.

Project. A collection of sprites, scripts, backgrounds, and sounds that is used as

the basis for creating Scratch applications.

Real Number. A number that includes a decimal number.

Reporter Block. A code block that has either rounded or angled sides and is

specifically designed as a mechanism for providing input for other code

blocks to process.

Rotation Center. The point on a sprite that remains in position when a sprite is

rotated.

Run-time Error. An application error that occurs when an application attempts

to perform an illegal action.

Scope. A term that refers to the area within an application where a variable’s

value can be accessed and modified.

Scratch Board. A special piece of hardware that you can buy from the Scratch

website and attach to your computer in order to collect and process

environmental and user-provided input.

Scratch Cards. PDF files that you can print and use as a quick reference for

performing certain tasks.

Script. A collection of code blocks that outlines the programming logic that

influences the operation of a sprite.

Sensing Blocks. Code blocks that can be used to determine the location of the

mouse-pointer, its distance from other sprites, and whether a sprite is touching

another sprite.

Sound Blocks. Code blocks that control the playback and volume of musical

notes and audio files.

Sprite. A two-dimensional image drawn on a transparent background that can

be moved around the stage. You can change its appearance using different

costumes.

Squeak. A cross-platform programming language used to develop Scratch.

Stack Blocks. Code blocks with a notch at the top or a bump at the bottom that

can be snapped together with other bocks to define a script’s programming

logic.

Stacks. Another term for a script.

Stage. The background area on the Scratch IDE upon which sprites are

displayed during application execution.

String. A set of characters that can be displayed within thought and speech

bubbles.

Tempo. A measurement of the speed, in beats per minute, at which a drum or

note is played.

Troubleshooting. The identification, location, and elimination of program-

ming errors, or bugs, that prevent applications from executing properly.

Variable. A location in memory where an individual piece of data is stored.

Variable Scope. Identifies the location within an application where the variable’s

value can be modified.

Variables Blocks. Code blocks that can be used to store data used by applications

when they execute.

Wave. A file with a .wav extension that supports the storage and playback of

audio files.

Whirl. A special graphic effect that twists and distorts a portion of a costume

or background.

306 Glossary

A
About button, 30

abs function, 168

accounts, Scratch registration, 23–24

acos function, 168

actions, initiating, 272

actors. See sprites

addition operations, 159–160

Adobe Photoshop program, 46

Advanced topics forum, 25

advantages of Scratch, 4–5

AIF files, 43

alignment, 41

All About Scratch forum, 25

alligator clips, 268

animated GIF files, 43

animation sequence, 226–227

Animation tags, 255

announcements, 25

applications

distributing, 91–93

executing from CD-ROM, 93

execution, 34

running, 257

on Internet, 251

in presentation mode, 33

troubleshooting, 74

uploading, 254–256

arithmetic operations, 67

Art tags, 255

asin function, 168

Asteroids, 50
atan function, 168

AU files, 43

audio files. See sound files

automation, 17–18, 20

B
backgrounds

adding to stage area, 32

Dance application example, 77–79

Family Picture Movie example, 223–225

Fish Tank application example, 111

Number Guessing Game project

example, 171

copying, 43

deleting, 79

editing, 43

importing, 78

special effects, 202–204

switching, 229

viewing, 43

Ball Chase game example

ball movement control, 191–192

coordinate game play scripts, 192–194

game over messages, 192

new project creation, 189

project preview, 188–189

saving and executing new project, 195

sound files, 191

sprites, adding and removing, 189–190

variables, adding required by application, 191

Basketball Quiz Project example

adding and removing sprites, 150–151

adding variables required by

application, 151–153

automating administration of, 154–157

new project creation, 150

307

INDEX

Basketball Quiz Project example (continued)
project preview, 148–150

saving and executing new

application, 157

scripts, adding to button sprites, 153–154

blocks. See also code blocks

categories, 60

color-coded, 60

control, 65, 177–178

hat, 57

help files, 70, 289–291

if...else, 122

looks, 62–63

monitors, 59

motion, 61–62, 98

moving, 54

numbers, 67

pen, 64

point in direction, 102

reporter, 57–58

sensing, 65–67, 120–121, 123, 270

sound, 63–64

stack, 55–57

variables, 67–69

Boolean data, 140

boolean logic, 74

broadcast messages, 174, 183

bubble captions, 16

button controls (Paint Editor), 49–50

buttons

About, 30

Choose New Sprite from File, 36

Compress Images, 31

Compress Sounds, 30–31

Control, 17

Copy, 43

Delete, 35, 38, 43–44

Duplicate, 35, 38

Edit, 43

Export, 40

Export this sprite, 35

Extras, 30

Get Surprise Sprite, 37

green flag, 34

Grow Sprite, 38

Help Screens, 31

Import, 30, 42, 78

Language, 30

Looks, 16

Motion, 38

Move, 37

New, 15, 29, 77

New Sprites, 35–36

Open, 29

Paint, 42

Paint Editor, 48–50

Paint New Sprite, 35

Play, 44

Presentation Mode, 33

Record, 44

red stop, 34

Reference Guide, 31

Save, 18, 29, 90

Save As, 29

Scratch toolbar, 37–38

Share!, 29

Show, 35

Shrink Sprite, 38

Sound, 16

sprite rotational, 41

Start Single Stepping, 30

Stop, 44

tooltips, 30

Undo, 30

Visit the Scratch support page button, 31

Want Help?, 30–31

Zoom (Paint Editor program), 47

C
case-sensitivity, variable names, 143

cat image icon representation, 12

CD-ROM, executing applications from, 93

CD-ROM (Scratch Programming for Teens)
free trial version, 6

Scratch installation files, 8

centering sprites, 35

Choose New Sprite from File button, 36

Clear canvas button (Paint Editor), 50

code blocks. See also blocks

adding, new project creation, 16–18

configurable, 7

dragging from blocks palette to

scripts area, 41

overview, 7

switching between, 38

collision detection, 124–127

color settings

Paint Editor program, 50

pen, 234–236

308 Index

color special effects, 202

comments, 257, 259

comparison operations, 162–165

Compress Images button, 31

Compress Sounds button, 30–31

conditional logic, 65, 68, 74, 184–185

control blocks, 65, 177–178

Control button, 17

coordinate system, stage, 31

coordinates, sprite, 105

Copy button, 43

copying

backgrounds, 43

costumes, 43

sprites, 35, 38

stage area portions, 33

Corel Paint Shop Pro project, 46

cos function, 168

costumes

adding, 42–43, 198

changing, 199

copying, 43

defined, 12

deleting, 43

editing, 43

numbering, 199

order of, 198

special effects, 202–204

switching, 228

viewing, 16

countdown, 227–228

Crazy Eight Ball Game example

eight ball display, 210–211

new project creation, 209

programming logic, 211–212

project preview, 207–208

saving and executing new project, 212

sound files, 210

sprites, adding and removing, 209–210

variables, adding required by application, 210

cross-hairs, 50–51

D
Dance application example

backgrounds, adding to stage area, 77–79

dance music, playing, 85–87

new sprite creation, 77

project preview, 75–77

saving and executing new Scratch

application, 90

sound files, importing, 82–84

sprites, adding and removing, 80–82

data

Boolean, 140

data types, 140–141

how data is collected, 139–140

integers, 140

real numbers, 141

storing in variables, 141

string, 140

debugging. See also errors

basic techniques, 281–284

informative messages, 282

monitors, liberal use of, 284

single stepping, 284–287

testing individual scripts, 283

updates, tracking, 281

Delete button, 35, 38, 43–44

deleting

backgrounds, 79

costumes, 43

sprites, 35, 38

variables, 145

development, Scratch, 3

direction, sprite, 101–103

disappearing/reappearing

sprites, 205

distance, determining, 127–128

distribution, applications, 91–93

division operations, 159–160

Doodle Drawing project example

clearing the stage area, 246–247

new project creation, 241

programming logic, 244–246

project preview, 240–241

saving and executing new project, 247

sprites, adding and removing, 242–243

downloading

projects, 265

Scratch, 8

drawing canvas (Paint Editor

program), 47

drawing lines and shapes. See pen

drum sounds, 216–217

Duplicate button, 35, 38

E
Edit button, 43

editing

backgrounds, 43

Index 309

editing (continued)
costumes, 43

scripts, 41

Educators forum, 25

electrical resistance, 274–275

Ellipse toolbar button (Paint Editor), 48

endless loops, 186–187

equal to comparison operator, 165

equal to operator, 165

Eraser toolbar button (Paint Editor), 48

errors. See also debugging

logical, 279–280

programming practices, 277–278

run-time, 280–281

syntax, 279

event handling, 74

event programming, 65, 178–179

execution

loop, 180–182

pausing, 178–179

Export button, 40

Export this sprite button, 35

exporting sprites, 35

Extras button, 30

Eyedropper toolbar button (Paint Editor), 48

F
Family Picture Movie example

new project creation, 222

programming logic, 226–229

project preview, 221–222

saving and executing new project, 230

sound files, 226–228

sprites and backgrounds, adding and

removing, 223–225

variables, adding required by application, 225

FAQ forum, 25

Fill toolbar button (Paint Editor), 48

Fish Tank application example

animating and swimming of fish, 113–117

backgrounds, adding to stage area, 111

new project creation, 111

project preview, 110

saving and executing new project, 116–117

sound files, adding, 112

sound files, playing, 113

sprites, adding and removing, 111–112

fisheye special effects, 202–203

Flip horizontally button (Paint Editor), 50

Flip vertically button (Paint Editor), 50

Follow the Mouse Scratch card, 110

forums

help files, 291–292

list of, 25–26

free trial copy, 6

full-screen mode, 33

G
galleries, 22–23, 260–263

Game tags, 255

Get Surprise Sprite button, 37

Getting Start button, 31

ghost effects, 203

GIF files, 43

Glide Scratch card, 110

global community of Scratch, 19, 21

global variables, 143–144

greater than comparison operator, 165

green flag button, 34

Grow button (Paint Editor), 49

Grow Sprite button, 38

H
hat blocks, 57

Hello World! application, 15

help files. See also resources

blocks, 70

forums, 291–292

Getting Started button, 31

Help Screens button, 31

for individual code blocks, 289–291

Reference Guide button, 31

Scratch Help web page, 289

Visit the Scratch support page button, 31

Want Help? button, 30–31

Help Screens button, 31

I
icons, cat image representation, 12

IDE (integrated development

environment), 28–29

if...else block, 122

images. See costumes

Imagine-Program-Share! slogan, 5

Import button, 42, 49, 78

Import Project button, 30

importing

backgrounds, 78

sound files, 44, 82–84

informative messages, 282

310 Index

installing

Java, 9–10

Scratch

on Mac OS X, 12–13

on Windows, 10–11

Scratch Boards, 269–270

integers, 140

interface design, 74

Internet, running applications on, 251

iterative processing, 74

J
Java, installing on Windows, 9–10

K
key, determining when pressed, 123

Key Moves Scratch card, 110

L
Language button, 30

language support, 19

laptops, One Laptop Per Child project, 4

less than operator, 165

levels, overlapping sprites, 206

licensing agreements, Java installation on

Windows, 10

light, reacting to, 272–273

light sensors, 268

Line toolbar button (Paint Editor), 48

lines and shapes, drawing. See pens

ln function, 168

local variables, 143–144

locking/unlocking sprites, 41

log function, 168

logic, Scratch application project example, 7

logical comparisons, 166–167

logical errors, 279–280

looks blocks, 62–63

Looks button, 16

looping, 65

endless loops, 186–187

execution, 180–182

variables blocks and, 69

M
Mac OS X

distributing Scratch applications to, 93

scratch installation, 12–13

mathematical calculations

abs function, 168

acos function, 168

addition operations, 159–160

asin function, 168

atan function, 168

built-in, 168–169

comparison operations, 162–165

cos function, 168

division operations, 159–160

ln function, 168

log function, 168

logical comparisons, 166–167

multiplication operations, 159–160

order of precedence, 160–161

random number generation, 161–162

rounded numbers, 167–168

sin function, 168

sqrt function, 168

subtraction operations, 159–160

tan function, 168

member galleries, 22–23

menu bar buttons, 29–31

MIT Media Lab, 6

monitors

appearance of, changing, 59

defined, 59

displaying, 59

liberal use of, 284

toggling between, 59

variable-based, 59, 147

mosaic effects, 203

motion blocks, 61–62, 98

Motion button, 38

mouse pointer location

retrieving mouse button and coordinate

status, 121–122

tracking, 37

Move button, 37

Move to a Beat Scratch card, 110

moving

blocks, 54

sprites, 37, 98–101

Moving Animation Scratch card, 110

MP3 files, 43

Mr. Wiggly’s Dance application example.

See Dance application example

multiplication operations, 159–160

music. See sound files

Music tags, 255

musical notes, 217–218

Index 311

N
naming

projects, 18

sprites, 16, 39

variables, 143

nesting conditional control blocks, 186

New button, 15, 29, 77

new project creation

Ball Chase game example, 189

Basketball Quiz Project example, 150

Crazy Eight Ball Game example, 209

Dance application example, 77

Doodle Drawing project example, 241

Family Picture Movie example, 222

Fish Tank application example, 111

Number Guessing Game project example, 171

saving and executing

Ball Chase game example, 195

Basketball Quiz Project example, 157

Crazy Eight Ball Game example, 212

Doodle Drawing project example, 247

Family Picture Movie example, 230

Fish Tank application example, 116–117

Number Guessing Game project example, 176

Scrapbook application example, 136–137

New Sprites button, 35–36

not equal to operator, 165

notes

adding and updating, 45

text saved as, 46

Number Guessing Game project example

backgrounds, adding, 171

new project creation, 171

player guesses, processing, 174–176

project preview, 169–171

saving and executing new project creation, 176

scripts, adding, 173–174

sound files, 173

sprites, adding and removing, 171–172

variables, adding required by

application, 172–173

numbers blocks, 67

numeric countdown, 227–228

O
One Laptop Per Child project, 4

Open button (menu bar), 29

order of precedence, 160–161

order of sprites, 34

overlapping sprites, 206–207

P
Paint button, 42

Paint Editor program

button controls, 49–50

color settings, 50

drawing canvas, 47

overview, 46

Set Rotation Center button, 50

starting, 35, 42

toolbar buttons, 48

Zoom buttons, 47

Paint New Sprite button, 35

Paintbrush toolbar button

(Paint Editor), 48

pen blocks, 64

pixelate effects, 203

Play button, 44

playback, sounds, 16

point in direction block, 102

Presentation Mode button, 33

presentation mode, running applications in, 33

program synchronization, 74

programming logic

Crazy Eight Ball Game example, 211–212

Doodle Drawing project example, 244–246

Family Picture Movie example, 226–229

project notes

adding and updating, 45

text saved as, 46

projects

creating new, 15–16

downloading, 265

naming, 18

removing, 264

updating, 264

R
random number generation, 67–68, 161–162

real numbers, 141

Record button, 44

recording sound files, 44

Rectangle toolbar button (Paint Editor), 48

red stop button, 34

Redo button (Paint Editor), 50

Reference Guide button, 31

registering

Scratch, 23–24

websites, 252–254

removing projects, 264

reporter blocks, 57–58

312 Index

repositioning sprites, 103–104

resources. See also help files

forums, 24–26

global community of Scratch, 19, 21

Want Help? button, 30–31

Rotate clockwise button (Paint Editor), 50

Rotate counterclockwise button

(Paint Editor), 50

rotation

clockwise, 99

sprite, 98–101

sprite rotational buttons, 41

rounding numbers, 167–168

Ruby programming language, 6

running applications, 257

run-time errors, 280–281

S
Save As button, 29

Save button, 18, 29, 90

Save Project window, 18

saving

how to save projects, 18–19

stage area copies, 33

Scrapbook application example

adding and removing sprites and

costumes, 133–134

adding sound files to stage, 134

new project creation, 132

saving and executing new project

application, 136–137

Scratch

advantages of, 4–5

building block approach to

programming, 6–7

development, 3

downloading, 8

free trial copy of, 6

installing

on Mac OS X, 12–13

on Windows, 10–11

user-adapted version, 8

website, 6, 8, 23–24

Scratch Boards, 131

controls and sensors, 268

installing, 269–270

purchasing, 269

Scratch Board Watcher, 275–276

Scratch cards, 107–110

scripts

alignment, 41

defined, 12

editing, 41

execution

pausing, 178–179

terminating, 187

running, 14, 17

spacing evenly, 41

Selection toolbar button (Paint Editor), 48

sensing blocks, 65–67, 120–121, 123, 270

sequential processing, 74

Set Rotation Center button (Paint Editor), 50

Setup Wizard (Scratch), 10–11

shading levels, 236–237

shapes and lines, drawing. See pens

Share! button, 29

shared projects, 251

Scratch slogan, 5

sharing your application projects, 21–23

show and tell topic forum, 25

Show button, 35

Shrink button (Paint Editor), 50

Shrink Sprite button, 38

Simulation tags, 255

sin function, 168

single stepping, 284–287

sites. See websites

size

pen, 238–239

sprite, 38, 204–205

sliders, 147, 268, 270–271

slogan, 5

sound blocks, 63–64

Sound button, 16

sound files

adding, 43–44

Fish Tank application example, 112

Scrapbook application example, 134

AIF files, 43

AU file, 43

Ball Chase game example, 191

cautious removal, 287–288

Crazy Eight Ball Game example, 210

Family Picture Movie example, 226–228

importing, 44, 82–84

importing and assigning to sprites, 42

MP3 files, 43

musical notes, 217–218

Number Guessing Game project example, 173

playback, 214–215

Index 313

sound files (continued)
playing, 44

Fish Tank application example, 113

Scrapbook application example, 135

recording, 44

removing from application, 44

responding to, 273–274

retrieving audio data, 130–131

stopping playback, 44

tempo, 220–221

viewing list of, 43–44

volume configuration, 219–220

WAV file, 43

Sound Recorder window, 44–45

sound sensors, 268

sounds

Compress Sounds button, 30–31

playback control, 16

as sprite components, 12

Space Invaders, 272
special effects

adding to costumes and backgrounds,

202–204

brightness, 203

color, 202

fisheye, 202

ghost, 203

mosaic, 203

pixelate, 203

whirl, 202

sprites

adding and removing

Ball Chase game example, 189–190

Basketball Quiz Project

example, 150–151

Crazy Eight Ball Game example, 209–210

Dance application example, 80–82

Doodle Drawing project

example, 242–243

Family Picture Movie example, 223–225

Fish Tank application example, 111–112

Number Guessing Game project

example, 171–172

appearance of, changing, 16

attributes of, changing, 16

automating, 17–18, 20

blue line indicator, 40

bouncing around stage, 105–106

centering, 35

changing size of, 38

collision detection, 124–127

components of, 12

coordinate and direction display, 39–40

coordinates and direction, keeping track of,

106–107

coordinates, changing, 105

copying, 35, 38

costumes, viewing, 16

defined, 12

deleting, 35, 38

direction, 101–103

disappearing/reappearing, 205

distance, determining, 127–128

exporting, 35

generating new, 35–37

locking/unlocking, 41

moving, 37

moving and rotating, 98–101

naming, 16, 39

New Sprites button, 35

order of, reorganizing, 34

overlapping, 206–207

repositioning, 103–104

retrieving stage and sprite data, 129–130

rotation center configuration, 50–51

rotational buttons, 41

selecting, 36, 81

size, 204–205

sprite list, 34–35

uses for, 14

sqrt function, 168

Squeak programming language, 6

stack blocks, 55–57

stacks, 53–54

stage area

appearance of, changing, 31–32

backgrounds, adding new, 32

Dance application example, 77–79

Fish Tank application example, 111

clearing, 231–232, 246–247

coordinate systems, 31

copying selected portion of, 33

defined, 12

full-screen mode, 33

mouse pointer location, tracking, 37

retrieving stage and sprite data, 129–130

running applications on, 31–33

saving copies of, 33

thumbnails, 32

Stamp toolbar button (Paint Editor), 48

314 Index

stamps, 239

Start Single Stepping button, 30

Stop button, 44

Story tags, 255

string data, 140

subtraction operations, 159–160

suggestions forum, 26

syntax errors, 279

T
tags

adding, 259

list of, 255

tan function, 168

tempo, 220–221

terminating script execution, 187

testing, 283

text controls, 201–202

Text toolbar button (Paint Editor), 48

thumbnails, stage area, 32

timer controls, 128–129

toggling, between monitors, 59

toolbars

Paint Editor program, 48

Scratch, 37–38

tooltips, 30

trial copy, 6

troubleshooting

applications, 74

forums for, 26

U
Undo button, 30, 50

updates, tracking, 281

uploading applications, 254–256

user input collection, 153–154

user-adapted version of Scratch, 8

V
variable-based monitors, 59, 147

variables

accessing variables belonging to other

sprites, 145–146

adding required by application

Ball Chase game example, 191

Crazy Eight Gall Game example, 210

Family Picture Movie example, 225

Number Guessing Game project

example, 172–173

assigning to sprites, 142–143

creating, 141

deleting, 145

examples of, 147–148

global, 143–144

local, 143–144

naming, 143

storing data in, 141

use of, 74

variable scope, 143–144

variables blocks, 67–69

Visit the Scratch support page button, 31

volume, sound files, 219–220

W
Want Help? button, 30–31

WAV files, 43

websites

registering, 252–254

Scratch, 6, 8, 23–24

Squeak, 6

whirl special effects, 202–203

Windows

distributing applications to, 92

Java installation, 9–10

Scratch installation, 10–11

X
X-axis

repositioning sprites, 103

stage coordinates, 31

Y
Y-axis

repositioning sprites, 103

stage coordinates, 31

YouTube website, 5

Z
Zoom buttons (Paint Editor program), 47

Index 315

License Agreement/Notice of Limited Warranty
By opening the sealed disc container in this book, you agree to the following terms and

conditions. If, upon reading the following license agreement and notice of limited warranty,

you cannot agree to the terms and conditions set forth, return the unused book with

unopened disc to the place where you purchased it for a refund.

License
The enclosed software is copyrighted by the copyright holder(s) indicated on the software disc.

You are licensed to copy the software onto a single computer for use by a single user and

to a backup disc. You may not reproduce, make copies, or distribute copies or rent or lease

the software in whole or in part, except with written permission of the copyright holder(s).

You may transfer the enclosed disc only together with this license, and only if you destroy

all other copies of the software and the transferee agrees to the terms of the license. You may

not decompile, reverse assemble, or reverse engineer the software.

Notice of Limited Warranty
The enclosed disc is warranted by Course Technology to be free of physical defects in materials

and workmanship for a period of sixty (60) days from end user’s purchase of the book/disc

combination. During the sixty-day term of the limited warranty, Course Technology will provide

a replacement disc upon the return of a defective disc.

Limited Liability
THE SOLE REMEDY FOR BREACH OF THIS LIMITED WARRANTY SHALL CONSIST

ENTIRELY OF REPLACEMENT OF THE DEFECTIVE DISC. IN NO EVENT SHALL

COURSE TECHNOLOGY OR THE AUTHOR BE LIABLE FOR ANY OTHER DAMAGES,

INCLUDING LOSS OR CORRUPTION OF DATA, CHANGES IN THE FUNCTIONAL

CHARACTERISTICS OF THE HARDWARE OR OPERATING SYSTEM, DELETERIOUS

INTERACTION WITH OTHER SOFTWARE, OR ANY OTHER SPECIAL, INCIDENTAL,

OR CONSEQUENTIAL DAMAGES THAT MAY ARISE, EVEN IF COURSE TECHNOLOGY

AND/OR THE AUTHOR HAS PREVIOUSLY BEEN NOTIFIED THAT THE POSSIBILITY

OF SUCH DAMAGES EXISTS.

Disclaimer of Warranties
COURSE TECHNOLOGY AND THE AUTHOR SPECIFICALLY DISCLAIM ANY AND ALL

OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES

OF MERCHANTABILITY, SUITABILITY TO A PARTICULAR TASK OR PURPOSE, OR

FREEDOM FROM ERRORS. SOME STATES DO NOT ALLOW FOR EXCLUSION OF

IMPLIED WARRANTIES OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL

DAMAGES, SO THESE LIMITATIONS MIGHT NOT APPLY TO YOU.

Other
This Agreement is governed by the laws of the State of Massachusetts without regard to choice

of law principles. The United Convention of Contracts for the International Sale of Goods

is specifically disclaimed. This Agreement constitutes the entire agreement between you and

Course Technology regarding use of the software.

