=%, BOURSETE QHiHOG Y
on CEFGAST | g

Frabemie + b o labprwcs

SCRATCH'
PROGRAMMING
FOR TEENS

JERRY LEE FORD, JR.

Course Technology PTR
A part of Cengage Learning

COURSE TECHNOLOGY

CENGAGE Learning"

Australia e Brazil Japan e Korea ® Mexico e Singapore e Spain ¢ United Kingdom e United States

COURSE TECHNOLOGY
CENGAGE Learning

Scratch™ Programming for Teens
Jerry Lee Ford, Jr.

Publisher and General Manager, Course
Technology PTR: Stacy L. Hiquet

Associate Director of Marketing:
Sarah Panella

Manager of Editorial Services:
Heather Talbot

Marketing Manager: Mark Hughes
Acquisitions Editor: Mitzi Koontz
Project Editor: Jenny Davidson
Technical Reviewer: Parker Hiquet
Teen Reviewer: Hannah Wittig

PTR Editorial Services Coordinator:
Erin Johnson

Interior Layout Tech:
ICC Macmillan Inc.

Cover Designer: Mike Tanamachi
CD-ROM Producer: Brandon Penticuff
Indexer: Sharon Shock

Proofreader: Gene Redding

Printed in Canada
1234567111009

© 2009 Course Technology, a part of Cengage Learning.

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored, or used in any form or
by any means graphic, electronic, or mechanical, including but not
limited to photocopying, recording, scanning, digitizing, taping, Web
distribution, information networks, or information storage and retrieval
systems, except as permitted under Section 107 or 108 of the 1976
United States Copyright Act, without the prior written permission of the
publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all
requests online at cengage.com/permissions
Further permissions questions can be e-mailed to
permissionrequest@cengage.com

Scratch is a project of the Lifelong Kindergarten group at the MIT Media
Lab. Scratch, the Scratch logo, and the Scratch cat are trademarks of
the Massachusetts Institute of Technology.

All other trademarks are the property of their respective owners.

Library of Congress Control Number: 2008902386
ISBN-13: 978-1-59863-536-2

ISBN-10: 1-59863-536-0
elSBN-10:1-59863-699-5

Course Technology

25 Thomson Place

Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions
with office locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:
international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

For your lifelong learning solutions, visit courseptr.com

Visit our corporate website at cengage.com

To my mother and father for always being there, and to my wonderful children,
Alexander, William, and Molly, and my beautiful wife, Mary.

ACKNOWLEDGMENTS

There are a number of individuals to whom I owe many thanks for their help and
assistance in the development of this book. For starters I need to thank Mitzi
Koontz who served as the book’s acquisitions editor. Special thanks also go out to
Jenny Davidson for serving as the book’s project editor. I also want to thank
Parker Hiquet and Hannah Wittig for all the valuable input and advice. In

addition, I would like to thank everyone else at Cengage Learning for all their
hard work.

Special thanks to the Scratch development team at the MIT Media Lab for
providing such an excellent programming langauge and website.

ABOUT THE AUTHOR

Jerry Lee Ford, Jr. is an author, educator, and an IT professional with over
18 years’ experience in information technology, including roles as an automation
analyst, technical manager, technical support analyst, automation engineer,
and security analyst. He is the author of 24 other books and co-author of two
additional books. His published works include AppleScript Studio Programming
for the Absolute Beginner, Microsoft Windows PowerShell Programming for the
Absolute Beginner, Microsoft Visual Basic 2005 Express Edition Programming for
the Absolute Beginner, Microsoft VBScript Professional Projects, Microsoft Windows
Shell Scripting and WSH Administrator’s Guide, Microsoft Windows Shell Script
Programming for the Absolute Beginner, Learn JavaScript in a Weekend, Second
Edition, and Microsoft Windows XP Professional Administrator’s Guide. Jerry has
a master’s degree in business administration from Virginia Commonwealth
University in Richmond, Virginia, and he has over five years” experience as an
adjunct instructor teaching networking courses in information technology.

CONTENTS

PART I

Chapter 1

Vi

Introduction Xiv
SCRATCHBASICS ittt et i i eaaaeas 1
Introducing Scratch, 3
Getting to Know Scratch. 4
Imagine—Program—Share! o Lo 5
Scratch Uncovered 6
Scratch’s Building Block Approach to Programming 6
Installing Scratch 8
Installing Java on Windows 9
Installing Scratch on Windows 10
Installing Scratchon Mac OS X. 12
Creating Your First Scratch Application 14
Creating a New Scratch Project 15
Changing Sprite Attributes. L. 16
Adding Code Blocks. 16
Saving Your Work 18
Joining Scratch’s Global Community 19
Sharing Your Application Projects 21
Registering with the Scratch Website 23
Keeping In Touch 24
SUMMaAIY . . ot e e e e e e e 26

Chapter 2

Chapter 3

Contents

Getting Comfortable with the Scratch Development

Environment i 27
Getting Comfortable with the Scratch IDE 28
Getting Familiar with Menu Bar Commands 29
Running Scratch Applications on the Stage. 31
Running Applications in Presentation Mode 33
Controlling Application Execution 33
Working with the Sprite List 34
Generating New Sprites 35
Tracking Mouse Pointer Location 36
Working with the Scratch Toolbar 37
Switching Between Code Block Groups. 38
Getting Comfortable with the Scripts Area 38
Keeping Project Notes 44
Creating New Sprites Using Scratch’s Paint Editor 46
Examining the Drawing Canvas 46
Working with the Toolbar and Options Area 47
Working with Button Controls 49
Specifying Color Settings 50
Configuring a Sprite’s Rotation Center 50
SUMMaAIY . . o e e e e 51

A Review of the Basic Components of Scratch Projects .. 53

Working with Blocks and Stacks 53
Three Basic Types of Scratch Blocks 55
Working with Stack Blocks 55
Working with Hat Blocks 57
Working with Reporter Blocks 57
Keeping an Eye Out with Monitors 58
Eight Categories of Scratch Blocks 60
Moving Objects Around the Drawing Canvas 61
Changing Object Appearance. 62
Making Some Noise 63
Drawing Lines and Shapes 64
Looping, Conditional Logic, and Event Programming 65
Sensing Sprite Location and Environmental Input 65
Working with Numbers 67
Storing and RetrievingData........................... 67
Getting Help with Code Blocks 70

SUMMaAIY . . o e e 71

vii

viii Contents

Chapter 4

PART Il
Chapter 5

Chapter 6

Mr. Wiggly’s Dance—A Quick Scratch Project
Programming with Scratch,
Creating the Mr. Wiggly's Dance Application
Step 1: Creating a New Scratch Project
Step 2: Adding a Background to the Stage
Step 3: Adding and Removing Sprites.
Step 4: Adding Mr. Wiggly’'s Music.
Step 5: Playing the Dance Music.
Step 6: Making Mr. Wiggly Dance
Step 7: Saving and Executing Your New Scratch Application . ..
Distributing Scratch Projects
Distributing Scratch Applications to Windows Computers
Distributing Scratch Applications to Mac OS X Computers.
Instructions for Executing Your Application from a CD-ROM . . .
SUMMANY . . .o e e e e e

LEARNING HOW TO WRITE SCRATCH PROGRAMS

Moving Things Around
Working with Motion Code Blocks
Moving and Rotating Sprites
Setting Sprite Direction.
Repositioning a Sprite
Changing Sprite Coordinates.
Bouncing Sprites Around the Stage
Keeping Track of Sprite Coordinates and Direction
Taking Advantage of Scratch Cards
Creating the Virtual Scratch Fish Tank
Step 1: Creating a New Scratch Project
Step 2: Adding a Background to the Stage
Step 3: Adding and Removing Sprites.
Step 4: Adding a Suitable Audio File to the Stage
Step 5: Playing the Audio File
Step 6: Animating the Swimming of the Fish
Step 7: Saving and Executing Your New Scratch Application . .
SUMMaAIY . . ot e e e e e e

Sensing Sprite Position and Controlling

Environmental Settings
Working with Sensing Code Blocks
Retrieving Mouse Button and Coordinate Status
Determining when Keys Are Pressed

Chapter 7

Chapter 8

Contents

Determining when Sprites Collide with Other Objects 124
Determining Distance 127
Working with a Timer 128
Retrieving Stage and Sprite Data 129
Retrieving AudioData 130
Code Blocks That Work with Sensor Boards 131
Creating the Family Scrapbook Application 132
Step 1: Creating a New Scratch Project 132
Step 2: Adding and Removing Sprites and Costumes. 133
Step 3: Adding a Suitable Audio File to the Stage 134
Step 4: Playing the Audio File 135
Step 5: Displaying the Photographs 135
Step 6: Saving and Executing Your New Scratch Application .. 136
SUMMAIY . . . e e e 137
Storing and RetrievingData..................... 139
Learning How to Work with ApplicationData 139
Storing Data in Variables 141
Creating Scratch Variables 141
Assigning Variables to Sprites and the Stage 142
Assigning Names to Your Variables 143
Understanding Variable Scope 143
Deleting Variables when They Are No Longer Needed 145
Accessing Variables Belonging to Other Sprites 145
Working with Variable Monitors 147
Two Quick Examples. 147
Developing the Basketball Quiz Project 148
Step 1: Creating a New Scratch Project. 150
Step 2: Selecting an Appropriate Stage Background 150
Step 3: Adding and Removing Sprites. 150
Step 4: Adding Variables Required by the Application 151
Step 5: Adding Scripts to Button Sprites to Collect
User Input e 153
Step 6: Automating the Administration of the Quiz 154
Step 7: Saving and Executing Your New Application 157
SUMMaANY . .o 158
DoingalittleMath 159
Addition, Subtraction, Multiplication, and Division 159
Understanding the Mathematical Order of Precedence 160

Generating a Random Number 161

ix

X

Contents

Chapter 9

Chapter 10

Comparison Operations, 162
Performing Logical Comparisons 166
Rounding Numbers and Retrieving Remainders 167
Working with Built-in Mathematical Functions 168
Developing the Number Guessing Game Quiz Project 169
Step 1: Creating a New Scratch Project 171
Step 2: Adding a Stage Background 171
Step 3: Adding and Removing Sprites. 171
Step 4: Adding Variables Required by the Application 172
Step 5: Adding an Audio File to the Application........... 173
Step 6: Adding Scripts to Capture Player Input 173
Step 7: Processing Player Guessescuuuuun.. 174
Step 8: Saving and Executing Your New Scratch Application .. 176
SUMMAIY . .t e e e e e e e e e 176
Conditional and Repetitive Logic 177
Introducing Scratch Control Blocks 177
Event Programming 178
Pausing Script Execution L o 179
Executing LooOPS o it e 180
Sending and Receiving Broadcasts. 183
Conditional Programming Logic 184
Nesting Conditional Control Code Blocks 186
Preventing Endless Loops 186
Terminating Script Execution 187
Developing the Ball Chase Game. 188
Step 1: Creating a New Scratch Project 189
Step 2: Adding and Removing Sprites. 189
Step 3: Adding Variables Required by the Application 191
Step 4: Adding an Audio File to the Application........... 191
Step 5: Adding a Script to Control Ball Movement 191
Step 6: Adding Scripts That Display Game Over Messages 192
Step 7: Adding Scripts Needed to Control and Coordinate
Game Play 192
Step 8: Saving and Executing Your Scratch Project 195
SUMMANY . . .ot e e e e e e e e 195
Changing the Way Sprites Look and Behave 197
Changing Sprite Costumes and Backgrounds 198
Changing Sprite Costumes 198

Changing a Stage’s Background Costumes 200

Chapter 11

Chapter 12

Contents

Making Sprites Talk and Think 201
Applying Special Effects to Costumes and Backgrounds 202
Changing a Sprite's Size 204
Making Sprites Appear and Disappear. 205
Determining What Happens when Two Sprites Overlap 206
Developing the Crazy Eight Ball Game 207
Step 1: Creating a New Scratch Project 209
Step 2: Adding and Removing Sprites. 209
Step 3: Adding a Variable Required by the Application. 210
Step 4: Adding an Audio File to the Application........... 210
Step 5: Creating a Script to Control the Display of the 8 in the
EightBall 210
Step 6: Adding the Programming Logic Needed to Control the
EightBall 211
Step 7: Saving and Executing Your Scratch Project 212
SUMMaAIY . . . e 212
Spicing Things Up with Sounds 213
Playing Sounds 214
Play @ Drum e 216
Playing Musical Notes 217
Configuring Audio Volume 219
Setting and Changing Tempo 220
Creating the Family Picture Movie. 221
Step 1: Creating a New Scratch Project 222
Step 2: Adding and Removing Sprites and Backgrounds 223
Step 3: Adding a Variable Required by the Application. 225
Step 4: Adding an Audio File to the Application. 225
Step 5: Developing the Application’s Programming Logic 226
Step 6: Saving and Executing Your Scratch Project 230
SUMMaAIY .« o o 230
Drawing Linesand Shapes 231
Clearing the Stage Area 231
Drawing withthePen, 232
Setting Pen Color 234
Changing Pen Shade. 236

Working with Different Size Pens 238

Xi

Xii

Contents

PART Il

Chapter 13

Chapter 14

Stamping an Instance of a Costume on the Stage 239
Creating the Doodle Drawing Application 240
Step 1: Creating a New Scratch Project 241
Step 2: Adding and Removing Sprites. 242
Step 3: Creating Scripts Used to Control the Doodle
Drawing Application 244
Step 4: Saving and Executing Your Scratch Project 247
SUMMaAIY . o ot e e e e e e 247
ADVANCED TOPICS ¢ i e i eennn 249
Sharing Your Scratch Projects over the Internet 251
Running Scratch Applications on the Internet 251
Registering with the Scratch Website 252
Uploading Your Scratch Applications 254
Viewing and Organizing Your Applications Online 257
Running Your Application 257
Adding Comments. 257
Adding Tags . ..o oot 259
Creating Galleries 260
Removing Projects 264
Updating Your Projects i, 264
Other Scratch Website Features 264
Downloading Other People’s Projects 265
SUMMaAIY . o ot e e e e e 266
Collecting External Input Using a Scratch Board 267
Interacting with the Real World 268
Buying aScratchBoard 269
Installing Your ScratchBoard 269
Using the Sensor Block to Interact with Your Scratch Board 270
Collecting Input Using the Slider Control 270
Using the Button Control to Initiate Action 272
ReactingtoLight......... 272
Respondingto Sound 273
Measuring Electrical Resistance 274
Keeping a Watchful Eye on SensorData. 275

SUMMAIY . .ttt e e e e e e e e e 276

Chapter 15

PART IV

Appendix A
Appendix B

Glossary . . .
Index

Contents

Finding and Fixing Program Errors 277
Dealing with Application Errors 277
Understanding Syntax Errors 279
Keeping an Eye Out for Logical Errors 279
Tracking Down Run-Time Errors 280
Debugging Your Scratch Applications 281
Basic Debugging Techniques 281
Running Your Application in Single Stepping Mode 284
Watch Out when Removing Sounds and Sprites. 287
Getting Help 288
Referring to Scratch’s OnlineHelp 289
Getting Help for Individual Code Blocks 289
Getting Help from Other Scratch Programmers. 291
SUMMaAIY . . . e 292
APPENDICES ittt iian s 293
What's on the CompanionCD? 295
What Next? i i e e 297
... 303
... 307

Xiii

INTRODUCTION

Welcome to Scratch Programming for Teens! Scratch is a programming language
developed by the MIT Media Lab for the purpose of teaching programming to
teens and other first-time programmers. Scratch is a new programming language,
initially released in May 2007. Scratch supports the development of computer
games, interactive stories, graphic artwork and computer animation, and all sorts
of other multimedia projects.

Scratch allows new programmers to create programs by snapping together blocks.
Scratch consists of a programming language made up of different blocks and an
easy to learn graphical development environment that includes a paint application
for creating graphics and built-in sound editing capabilities. Scratch also comes
with huge collections of sample applications as well as graphics and sound files, all
of which you can use to create your own Scratch projects.

As demonstrated in Figure A.1, Scratch programs are made up of graphical
blocks, which are snapped together. Scratch blocks resemble puzzle pieces in the
way that they snap together. Scratch blocks can only be snapped together in ways
that make sense, preventing new programmers from using them in invalid
combinations. In this way, Scratch enforces proper programming syntax and
ensures that new programmers learn the proper way to assemble and formulate
programming logic.

Scratch’s development was inspired by the method that hip-hop DJs use to mix
and scratch records to create new and unique music. In Scratch, new programmers

Xiv

Introduction

move steps

play sound meow

Figure A.1
Script blocks are used as the basis for writing scripts that help bring applications to life.

are able to create new application projects that incorporate pre-built code blocks,
graphics, and sound files in all kinds of new combinations. Scratch lets pro-
grammers modify applications on the fly, allowing changes to be made even
while Scratch applications are running. The result is an interactive, real-time
programming environment that encourages experimentation and learning.

This book’s primary goal is to teach you everything you need to know to learn the
basics of computer programming with Scratch. To help accomplish this goal, this
book will emphasize learning by doing through the development of a series of fun
and interesting exercises.

Why Scratch?

Scratch provides everything needed to begin developing computer games, multi-
media presentations, interactive stories, graphic artwork, and computer anima-
tion. Scratch can be used to play digital music and sound effects. Scratch’s
building block approach to programming sets it apart from other programming
languages. This makes Scratch easier to learn. And yet Scratch provides plenty of
programming power, allowing you to build very powerful application projects.

If you aspire to one day become a professional programmer, you will find that
Scratch provides everything needed to build a foundation from which you can
make the transition. Scratch also packs all of the programming power and punch
needed to satisfy the programming needs of most computer enthusiasts and
hobbyists.

Who Should Read This Book?

Scratch Programming for Teens is designed to provide all of the instruction that
a first-time programmer requires to quickly get up and running. Previous
programming experience will certainly be helpful, but it is by no means a

XV

XVi

Introduction

requirement of this book. This book makes no assumptions about your
computer background other than that you are comfortable working with one of
the operations systems supported by Scratch.

This book provides everything you need to get started with Scratch. Before you
know it, you will be creating all kinds of projects, incorporating graphics, sound,
and animation. As you learn how to program with Scratch, you will learn
programming principles and techniques that you can later apply to other pro-
gramming languages. As such, you will be able to apply what you learn about
programming with Scratch to other programming languages like Microsoft
Visual Basic and AppleScript.

What You Need to Begin

Obviously, the first thing you need is a copy of Scratch. Scratch is available for
free download at the Scratch website located at http://scratch.mit.edu/download.
You can also download a copy from the CD included in the back of the book. You
also need good instruction, which you will find in this book. In addition to
Scratch and this book, you need a computer running a supported operating
system, which also meets Scratch’s minimum system requirements.

Supported Operating Systems

Scratch can be run on computers using either Microsoft or Macintosh operating
systems. Specifically, Scratch can be installed on a computer running any of the
following operating systems.

m Microsoft Windows 98/ME

m Microsoft Windows N'T/2000

m Microsoft Windows XP/Vista

m Mac OS X Version 10.3 or higher
All of the figures and examples in this book will be shown using Scratch 1.2.1
running on computers using either Microsoft Vista or Mac OS X 10.5. If you
are going to be working with Scratch on a different version of Windows or

Mac OS X, you may notice small differences in the way things look. However,
all major Scratch features and functionality should work the same and you

http://scratch.mit.edu/download

Introduction

should not have any problems following along with the instruction provided in
this book.

Note

There is no official Linux version of Scratch currently available. However, members of the Scratch
community have created different Scratch implementations for Linux. An example of one such
implementation is available at http://tcpdpodcast.org/scratch.html.

Minimum System Requirements

Scratch does not impose any additional hardware requirements over and above
those required by the operating system. However, as Table A.1 shows, Scratch
does impose screen resolution and disk space requirements, which must be met
for Scratch to run.

To work with Scratch, you must be able to display its graphical interface, also
referred to as its integrated development environment or IDE. This interface
requires that the computer’s screen resolution be set to 1024 x 768 or higher.
Anything less and part of the interface will disappear off the screen. Scratch
comes packed with all kinds of graphics and audio files that you can use when
creating new Scratch projects. As a result, your computer must have at least an
extra 120 MB of hard disk space in order to install Scratch.

Note

One of the really neat things about Scratch is the ability to share Scratch application projects with
others on the Internet at the Scratch website (Scratch.mit.edu). To participate in this experience,
your computer needs to have Java installed. Mac 0S X comes with Java pre-installed. However, by
default, Microsoft Windows does not. So, if you are a Windows user and you have not yet installed
Java on your computer, you can do so by visiting http://java.com/en/download.index.jsp.

Table A.1 Scratch Minimum System Requirements

Requirement Recommended

Screen Resolution 1024 x 768 (16-bit color)
Hard Disk 120 MB

XVii

http://tcpdpodcast.org/scratch.html
http://java.com/en/download.index.jsp

XViii

Introduction

Of course, Scratch’s minimum hardware requirements are just that, minimum
requirements. If your computer’s memory and processor exceed the minimum
requirements of the operating system, things will run a lot faster and you will be a
lot happier. In addition, you will need extra hard drive space beyond the 120 MB
minimum required to install Scratch to have a place to store your creations.
Scratch lets you create projects that incorporate the use of sound, both as input
and output. To take advantage of this feature, your computer will need both
speakers and a microphone.

How This Book Is Organized

Scratch Programming for Teens is organized into four parts. This book was
written with the expectation that you will read it sequentially, from cover to
cover. However, if you have some previous programming experience, you may
instead want to jump around a bit, focusing on topics that interest you the
most.

Part I of this book is made up of four chapters that provide an introduction to
Scratch and its development environment. You will also learn about the different
components that make up Scratch projects and then learn how to create and
execute Scratch projects.

Part II consists of eight chapters, each of which is designed to provide instruction
on how to work with different types of Scratch blocks. You will learn how to use
blocks that move things around, store and retrieve data, as well as perform math
and conditional and repetitive logic. You will also learn how to integrate sound
and draw lines and shapes.

Part III of this book is made up of three chapters, each of which focuses on a
different advanced topic. These topics include learning how to share your Scratch
projects with others on the Internet, how to create Scratch projects that use the
Scratch Board, and how to find and fix program errors that prevent your Scratch
projects from working like you want them to.

Part IV is made up of two appendices and a glossary. The first appendix reviews
the list of sample Scratch projects that you will learn how to develop as you make
your way through this book. The second appendix provides a list of websites and
reading materials that you will want to explore to continue learning more about
Scratch and to further your programming knowledge.

Introduction

Conventions Used in This Book

One of the primary objectives of this book is for it to be easy to read and
understand. To help support this objective, a number of simple conventions have
been used throughout the book to highlight critical information and help
emphasize specific points. These conventions are briefly described below.

m [talics. Key terms that you will want to understand and remember are
highlighted using italics the first time that they are instructed. So remember,
anytime you see a term in italics, take an extra moment to think about it
and understand its meaning or purpose.

Note

Notes are used to provide additional information about a topic, feature, or idea to better help you
understand its impact or implications.

Tip

Tips are used to point out programming shortcuts that will help make you a better and more
efficient programmer.

Caution

Cautions are used to identify areas where you are likely to run into problems and then provide
advice on how to deal with the problem or prevent problems from occurring, making you a better,
more efficient, and much happier programmer.

Xix

This page intentionally left blank

PART |

ScRrRATCH BAsiIcs

This page intentionally left blank

CHAPTER 1 -

INTRODUCING SCRATCH

Scratch is a programming language developed to help young people between the
ages of 8 and 16 learn 21st century skills by developing computer programs.
The development of Scratch was inspired by the scratching process that DJs use
to create new sounds and music by rubbing old-style vinyl records back and forth
on record turntables, creating a new and distinctively different sound out of
something that already exists. In similar fashion, Scratch application projects mix
together graphics and sounds in order to use them in new and different ways. To
help get you started with Scratch programming, this chapter provides an over-
view of the language and reviews the steps that you need to follow to get up and
running quickly.

The major topics covered in this chapter include:

m A review of Scratch’s capabilities and uses

m Instruction on how to install Scratch on both Microsoft Windows and Mac
0OS X

m A discussion of the benefits of joining Scratch’s global community

m A demonstration of how to create and execute your first Scratch application
project

Chapter 1 = Introducing Scratch

Getting to Know Scratch

With traditional computer and Internet applications, users are limited to
working with applications in the way the programmers who developed the
applications designed. Scratch turns things around by letting users become
programmers. Scratch is designed to meet the needs of young people between 8
and 16, helping to introduce them to computer technology and to improve their
learning skills while at the same time facilitating creativity and personal
expression.

Many people regard computer programming as a mysterious and complex process
that requires advanced technical training and education. This is a misperception.
Programming languages like BASIC have been around for decades and were
developed expressly for the purpose of teaching first-time programmers how to
program. In recent years, a new crop of programming languages has appeared,
specifically geared towards helping children and students learn to program. One of
the very best and newest of these languages is Scratch.

Scratch is a visual programming language that is made up of a graphic
interface that supports application development in which new projects are
created by mixing together images, sound, and video under the control of
scripts, which specify the application’s programming logic. Scripts are created
by snapping blocks together, much in the same way that Lego blocks are
snapped together to create all sorts of unique creations. Each block represents
a different command or action that tells the application how to execute.
Scratch also provides programmers with access to all kinds of media, including
graphics and sounds as well as tools that can be used to create new graphics and
sound files.

Note

Scratch is also being installed on all XO laptops, as part of the One Laptop Per Child Project, which
is a program designed to produce and distribute inexpensive laptop computers to children in
developing countries around the world to help their education and unlock their potential.

Scratch is an interpreted programming language. This means that application
projects are not precompiled (turned into executable code that can be run as a
stand-alone application) before their execution. Instead, the code blocks that
make up Scratch application projects are interpreted and processed each time the
application project is executed. Scratch is also a dynamic programming language.

Getting to Know Scratch

It allows changes to be made to application projects even while the projects are
executing. As such, Scratch lets programmers experiment by making application
changes on the fly in order to see what type of effect the changes may have on the
application’s execution.

Imagine—Program—Share!

Scratch’s slogan is Imagine—Program—Share! It is designed to encourage
teens’ creativity by providing them with an easy to learn yet powerful pro-
gramming environment in which they can unleash the power of their imagi-
nation. Scratch encourages and facilitates the development of application
projects using a mixture of media, graphics, sound, and video in order to create
something new.

Scratch provides new programmers with everything needed to create and execute
new application projects. Its programming language is designed to make it as
easy as possible for new programmers to jump in and get their feet wet and to
receive immediate feedback on their progress. Scratch promotes an under-
standing of programming concepts, including conditional and iterative logic,
event programming, the use of variables, mathematics, and the use of graphics,
and sound effects. By learning to program with Scratch, new programmers
develop an understanding and appreciation of the design process, from idea
generation to program development, then testing and debugging and the incor-
poration of user feedback.

People, especially kids, love to share, as demonstrated through the amazing
success of websites like YouTube, which allows people to share home video.
Sharing is a fundamental part of the Scratch programming experience. Scratch
application projects can not only be run on the programmer’s desktop but can
also be uploaded to the Scratch website, where they can be viewed, executed
online, and commented on by other Scratch programmers from around the
world. By posting their Scratch application projects on the Scratch website, kids
share their experiences and learn from one another and gain gratification and
confidence from the experience.

Hint

To share an application project, Scratch programmers must provide the source code that makes
the application work. There is no way to keep the source code hidden.

Chapter 1 = Introducing Scratch

Scratch Uncovered

For your convenience, a free trial copy of Scratch (version 1.2.1) is available on
this book’s companion CD-ROM. In addition, Scratch can be downloaded from
the Scratch website located at http://scratch.mit.edu/download. Unlike many
programming languages such as Microsoft Visual Basic or C++, Scratch is an
open source project. What this means is that all of the source code that makes up
the Scratch programming language is freely available. In fact, if you want, you can
download a copy of the source code for Scratch at http://scratch.mit.edu/pages/
source.

Note

Scratch was developed using another programming language known as Squeak. Squeak is a cross-
platform programming language, meaning that it can be used to develop applications on many
different computer operating systems. By selecting Squeak as the programming language used to
create Scratch, Scratch’s development team ensured that they would be able to create and
execute Scratch on different operating systems, including Microsoft Windows and Mac 0S X. If
you are curious, you can learn more about Squeak by visiting http://www.squeak.org.

Examples of other open source programming languages include Ruby and Perl.
However, unlike these programming languages developed by a community of
programmers working together collectively, Scratch was developed as a closed
development project. This means that all Scratch development is performed by
the Lifelong Kindergarten Group at MIT Media Lab.

Scratch’s Building Block Approach to Programming

Scratch is a new programming language, initially released in March 2006. Scratch
is different from other programming languages like Visual Basic in that it does
not support a text-based approach to programming, as demonstrated here:

//Excerpt froma Visual Basic application
If strCurrentAction="Fil1Circle" Then
Dim objCoordinates As Rectangle
objCoordinates = _
New Rectangle(Math.Min(objEnd.X, objStart.X), _
Math.Min(objEnd.Y, objStart.Y)
Math.Abs(objEnd.X - objStart.X), _
Math.Abs(objEnd.Y - objStart.Y))
Pick_Color_And_Draw("Fil1Circle", objCoordinates)
End If

http://www.squeak.org
http://scratch.mit.edu/download
http://scratch.mit.edu/pages/source
http://scratch.mit.edu/pages/source

Getting to Know Scratch

. change color | effect by

sat whirl |effect to [}

Figure 1.1
An example of how programming logic is outlined in a Scratch application project.

In text-based programming languages, code statements are formulated by fol-
lowing a complex set of syntax rules. Failure to precisely follow these rules when
writing statements leads to syntax errors that prevent applications from running.
Scratch, on the other hand, uses a different approach. Scratch application pro-
jects are built by selecting and snapping together graphical programming blocks,
as demonstrated in Figure 1.1.

By using code blocks in place of complex program text statements, Scratch
significantly simplifies application development while still making use of the
same basic programming logic and concepts implemented in other pro-
gramming languages. As Figure 1.1 demonstrates, each code block repre-
sents a different command or action. Blocks fit together like pieces in a
puzzle. You can only snap together blocks in ways that make syntactic sense,
completely eliminating syntax errors that proliferate in other programming
languages.

Some code blocks are configurable, allowing you to specify things like the
number of times an action should execute, text that is to be displayed, or the
color to be used when displaying something on the screen. Despite its use of
graphical code blocks, Scratch supports the same basic set of programming
techniques and constructs as do other traditional programming languages. For
example, Scratch supports variables, conditional and iterative logic, and event-
driven programming. Scratch also supports the manipulation of graphics and the
integration of sound into application projects.

7

8

Chapter 1 = Introducing Scratch

Note

Scratch is designed for teaching first-time programmers how to program. To make the learning
experience as straightforward and understandable as possible, the developers of Scratch have
sometimes sacrificed programming power and features in favor of simplicity and ease of learning.
The goal of the Scratch development team is to promote learning and not to develop a pro-
gramming language capable of delivering every advanced programming feature required by
professional programmers. As a result, Scratch lacks some programming features currently sup-
ported in advanced programming languages. Instead, Scratch focuses on fundamental program-
ming concepts to provide new programmers with a foundation upon which they can later build,
when and if they decide to move on to other programming languages.

Installing Scratch

Before you can use Scratch, you need to install it on your computer. The
installation process varies, depending on whether you use Microsoft Windows or
Mac OS X. Instructions for installing Scratch on both of these operating systems
are provided in the sections that follow. You will find the installation files needed
to install Scratch 1.2.1 on this book’s companion CD-ROM. Alternatively, you
can download a copy of Scratch from the Scratch website by executing the
following steps:

1. Go to http://scratch.mit.edu and click on the Download Scratch Now! link.

2. The Download Scratch page appears. Fill in the optional form to receive
updates about Scratch.

3. Click on the Continue to Scratch Download button. The web page shown
in Figure 1.2 displays. Click on the appropriate link for your operating
system.

The Windows download file is provided as a self-extracting executable named
Scratchlnstaller.exe. The Mac OS X installation file is provided as a Mac OS X
disk image file named MacScratch.dmg. Both of these installation files are
approximately 30MB in size, so to download them you will want to use a
broadband Internet connection.

Note

There is no official Linux version of Scratch currently available. However, a user-adapted version
of Scratch, along with instructions for installing it, is available at http://tcpdpodcast.org/
scratch.html.

http://scratch.mit.edu
http://tcpdpodcast.org/scratch.html
http://tcpdpodcast.org/scratch.html

Installing Scratch

/& Scratch | Programming for everyone | Informational Page - Windows Intemet Explorer IE=REcE =%
@\;; . |8_ hitp://scratch.mit.edu/pages/download '|*'7 x| | Yahoo! Search R~
File Edit View Favorites Tools Help
@B Sctch|P ing for |Informatio.. || f - B v & v [Pager 'aTonlsvﬂ'ii
Mﬂ?f‘]’lHTT home projects galleries support forums about my stuff
Siiieig < prosta s Yire Login ar Signup far an account [[search

Download Scratch v. 1.2.1 for Macintosh or Windowa:

1

Mac 05 X Windows

MacScratch.dmg (32.1 MB) L] Attention Windows Users: It is recommended that
you upgrade to Scratch 1.2.1 by running the Scratch
1.2.1 installer. Do not run the Scratch 1.1 uninstaller
or you may lose saved projects.

Easy installer version: Scratchinstaller.exe (30.3 MB

Files nnly versinn: WinScratch.7ip (79.9 MR)
(Download this version if you do not have admin
permissions or if you have trouble with the installer.)

m (1

@ Intemet | Protected Mode: (n H100% -

Figure 1.2
Downloading either the Mac OS X or Windows version of Scratch.

Installing Java on Windows

While Mac OS X comes with Java already installed, Windows does not. For-
tunately, installing Java on Microsoft Windows is both free and easy. To do so, go
to http://java.com/en/download as shown in Figure 1.3 and click on the Free Java
Download button.

Once the online installation process begins, you will need to complete the following
steps to finish installing Java:

1. After clicking on the Free Java Download button, you may be prompted
by a Windows security window for permission to allow the installation
process to continue. If so, click on the Continue button.

http://java.com/en/download

Chapter 1 = Introducing Scratch

Mobile | java Everywhere | Duke’s Zone

Free Java Download IO -
Download Java for your desktop computer now! FINE O " S
JEVE HUNITE tTVEIAmEN on
your Windows PCz.
Looking for the enterprise
Vicrson & Updaic 3 e -
» Downipad here.
Vihat & Java? Do | bave Java? Need Help?

IT YOU WA 1D Cownisd J&vE 10 SROMEr COmpuUEr or UPSraing Sysiem, cick Ie Ik
beow.

~ Al Jsvs Downicads

Why Download Java?
Javn tochacogy slows you ts werk and ply in 8 sccurT compufing crviomment

Java & ccl phones, sulomobies, he Mars Rover, snd manmy offer plces. By
downisading i o your compuier, you will be sble o experience fhe power of lava.

Viad jove com froquontly. Now coniont 2 odded alf fhe Sme!

Figure 1.3
Java is required to view and execute Scratch projects loaded onto the Scratch website.

2. Next, a window will appear requesting permission to begin the installation
process. Click on the Install button to continue.

3. Finally, a Java Setup Wizard will appear, requiring that you accept the Java
License Agreement. Click on the Accept button and then follow the rest
of the wizard’s instruction to complete the installation process.

Installing Scratch on Windows

Scratch installs on Microsoft Windows like any other Windows application. The
following procedure outlines the steps involved in completing Scratch’s install
process:

Installing Scratch 11

]

=

Welcome to the Scratch 1.2.1 Setup
Wizard

This wizard will quide you through the nstallation of Soratrch.
I you already have Saaith installed, this installer wil
remove previous sample projects. If you have changed any
of the sample projects, be sure to save them with a different
name before instaling the new version of Soath.

Make sure Saatch is not running before starting the

Click Next to confinue.

Nei> | | Conced

Figure 1.4
Installing Scratch on Microsoft Windows.

1. Double-click on the ScratchInstaller.exe file.

2. If prompted for confirmation, click on Run to allow the installation process
to begin.

3. If a security message displays, click on Allow to give permission for the
installation process to continue.

4. The Scratch Setup Wizard will then appear, as demonstrated in Figure 1.4.
Click on Next and follow the instructions provided by the wizard to complete
the installation process.

5. Once the Scratch Setup Wizard has completed the installation process,
you will need to click on the Finish button to close the wizard. Scratch will
then automatically start, as demonstrated in Figure 1.5. In addition, a
shortcut for Scratch will be added to the Windows desktop.

Note

In addition to being able to start Scratch by clicking on its desktop shortcut icon, you can click on
Start > All Programs > the Scratch folder > and then the Scratch icon.

12

Chapter 1

Introducing Scratch

ECEBICE

move) steps
turn (% (@ degraas

turn § () degrees

point in direction (e

point towards

woxcByr0

ga tn

ghde @ secs tox @y @

change x by (B
set x to @)
changa y by @)

set y to ()
if on edge, bounce
8 x position

H v position
[drection

COC D e e 3 e

g | & [nalwel
*n':tj\‘n AN

R0

Figure 1.5

Running Scratch on Microsoft Windows Vista.

Installing Scratch on Mac OS X

To install Scratch on Mac OS X, double-click on the MacScratch.dmg archive
file to open it. Inside you will see a folder named Scratch. Drag and drop
the Scratch folder to your Applications folder (or to any other location
that you want) to install it. The contents of the Scratch folder are shown in

Figure 1.6.

To start Scratch and begin working with it, double-click on the Scratch icon,
which is represented as a cartoon image of a cat. Within a few moments, the

Scratch IDE should appear, as shown in Figure 1.7.

0

06 [seratch

L_".JLJ u; u]]||u|' L.':('._‘J

¥ DEVICES
© =
8 Maciniosh HDY

%) led Academy Dise 1 - Scrawch Help locale
¥ PLACES 'a

A} Jerryford

[Desktop Frojects Media Scratch.mage

o Applications

E movies

|5 Documents o

£ music license txt

[l Pictures
W0 sedi academy mp

B:0

-

¥ SEARCH FOR
(Z) Today
(£ Yesterday
(L) Past Week
(& Il Images
(5 All Mavies
(& All Documents.

7 items, 47.35 GB available 4

Figure 1.6
Installing Scratch on Mac OS X.

Installing Scratch

ane Scratch 1.2.1 (6=Dec=-07)

HMotion

Looks

Soumd

ren

move @0 stope

o B dearees

turn) (B3 degrees

point in dwection ETE)

point towards

a0 to x @ v @
wo tu

glido @ cocs to x: @ v @

chnage x by D
ot « to @
change y by D

sety to @
If on adge, bounce
W x position

¥ position
Bl direction

Figure 1.7
Running Scratch on Mac 0S X 10.5.

14

Chapter 1 = Introducing Scratch

Note

The first time you start Scratch, Mac 0S X may display a popup dialog window prompting you for
confirmation that you want to run Scratch, because it is an application downloaded from the
Internet. Click on the Open button to allow Scratch to start. This popup dialog window will not
display upon subsequent startups.

Creating Your First Scratch Application

Scratch application projects are made up of objects called sprites. A sprite is a
two-dimensional bitmap image drawn on a transparent background. Sprites can
be moved around and made to interact with one another. Sprites consist of three
primary components, as outlined here:

m Scripts. Collections of code blocks that outline the programming logic that
controls the operation of sprites.

m Costumes. Images that are used to display the sprite on an area of the
Scratch IDE, referred to as the stage. Sprites can consist of any number of
costumes.

m Sounds. Sound effects that are played during application execution when
certain events occur or as background audio.

A sprite’s appearance can be changed by assigning it different costumes. To move
a sprite and control its behavior, you snap together code blocks to create scripts.
Sprites can have any number of scripts associated with them. Scripts can be run
by double-clicking the code blocks that make them up, in which case each block
in the script is executed in top-down order. You can also set things up so that
scripts automatically run when various events occur. For example, you can
configure script execution to occur when a sprite is clicked or when it interacts
with other sprites.

Sprites are displayed and interact with one another on a stage. As such, sprites are
often referred to as actors. Scratch’s stage is located in the upper-right corner of
its graphical interface.

Note

Sprites can be selected from a predefined collection of graphic objects supplied with Scratch. They
can also be copied and pasted from your hard drive or the Internet or created using Scratch’s built-
in Paint Editor.

Creating Your First Scratch Application

Creating a New Scratch Project

Now that you are familiar with the basic components of sprites, let’s spend a few
minutes learning how to create your first Scratch application project. All new Scratch
projects automatically contain a single sprite, representing an image of a kitten. By
default, the sprite, named Spritel, does not have any scripts but does have two
costumes and two sounds associated with it. Using this sprite, let’s create a Scratch
application project that makes the kitten meow and say “Hello World!” when clicked.

The first step in creating a new Scratch application is to click on the New button
located at the top of the Scratch IDE. In response, Scratch will create a new
project, as shown in Figure 1.8.

As Figure 1.8 shows, the Scratch IDE is organized into a number of separate
components. For starters, the code block area contains code blocks, organized
into eight different collections. You will use selected code blocks to create a script
that makes the kitten talk.

Code Block Area Sprite Area Stage Sprite List

ano Scratch 1.2.1 (6-Dec-07)

) Csharet | [undo | [(canguage | exteas | [wane[ueip? | B

o= OB xs':: T

move [staps
turn v (B dearees

turn) (B3 degrees

point in direction ETE)

point towards

qo to x @ v @
wo ta

ghda @ coce to x: @ v @

Figure 1.8
Creating a new Scratch application project.

15

16

Chapter 1 = Introducing Scratch

To the right of the code block area is the sprite area. Information about the
currently selected sprite is displayed at the top of this area. Just beneath this
information are three tabs, which are used to control access to the scripts, cos-
tumes, and sounds belonging to the sprite. To the right of the sprite area is the
stage, which currently displays the default costume belonging to Spritel. Just
beneath the stage is the sprite list, which displays a list of all the sprites that make
up the application project.

Note

Chapter 2, “Getting Comfortable with the Scratch Development Environment,” provides a detailed
overview of all of the components that make up the Scratch IDE.

Changing Sprite Attributes

The application project that you are creating is designed to work with the default
sprite. Rather than use the sprite’s default name of Spritel, let’s assign it a more
descriptive name. To do so, overtype the text displayed at the top of the sprite area
with the word Cat. Once you change the name assigned to the sprite, the name
change will automatically be reflected in the sprite list. If you look at the entry for
the sprite in the sprite list, you should see a picture of the sprite, its new name, and
the number of costumes currently assigned to the sprite (you can click on the
Costumes tab at the top of the sprite area to view the sprite’s costumes).

Adding Code Blocks

Now that you have changed the name of the sprite, it is time to add the code
blocks required to make the cat meow and say “Hello World!” Let’s begin by
clicking on the Sound button located at the top of the code block area. This
displays a collection of code blocks that control the playback of sound effects.
Locate the code block labeled play sound and drag and drop it onto the sprite
area, as shown in Figure 1.9.

By default, this code block is automatically set up to play an audio file that makes
a meow sound. Next, click on the Looks button located at the top of the code
block area. This displays a collection of code blocks that control the appearance
of a sprite. Locate the code block labeled say Hello! for 2 secs and drag and drop
it onto the sprite area, as shown in Figure 1.10.

By default, this code block displays a text string inside a graphical bubble caption.
This code block has two editable fields: a text field and a numeric field. Since the

Creating Your First Scratch Application

rlay sound meow

Figure 1.9
Using a sound block to make the kitten meow.

kitten is supposed to display the message “Hello world!”” when clicked, replace
the text “Hello!” with “Hello World!”.

As previously stated, you can run a script at any time by double-clicking on
it. To test this, double-click on one of the two code blocks that you have
added and then watch the kitten on the stage, and you’ll hear it meow and
display its message. Rather than having to double-click on the script to make
the kitten do its thing, let’s set things up so that the kitten automatically
meows and talks whenever you click on it. This is accomplished by clicking on
the Control button located at the top of the code block area and then dragging
and dropping the control block labeled when Cat clicked on top of the two
buttons you have already added to the sprite’s script, as demonstrated in
Figure 1.11.

The when Cat clicked block automatically snaps in place as you move it toward
the top of the script. With this block now in place, click on the script file and see

17

18

Chapter 1 = Introducing Scratch

play sownd

] Hello o

Figure 1.10
Using a looks block to make the kitten say something.

what happens. As demonstrated in Figure 1.12, the kitten responds by meowing
and talking (displaying "Hello wor1d!" in a text caption bubble).

Saving Your Work

Okay, now that you have your new Scratch application project working, it is time
to save your work. This is done by clicking on the Save button located at the top
of the Scratch IDE. In response, the Save Project window shown in Figure 1.13
displays, allowing you to assign a name to your project and store it on your
computer.

Type Hello World in the New Filename field to name your application. If you
want, you can type your name in the Project Author field and then enter a short
description in the About This Project field and then click on the OK button to
save your project.

Joining Scratch’s Global Community

play sownd

] Helle waarldr T - oy

Figure 1.11
Using a control block to control script execution.

That’s it. At this point, you have gone through all of the steps necessary to create,
test, modify, execute, and then save a new Scratch application project. Now that
wasn’t too tough, was it? Before wrapping up this chapter, let’s spend a few
minutes learning about Scratch’s global community of users and how you can tap
in to learn more about Scratch.

Joining Scratch’s Global Community

Scratch is supported by a global community of students, teachers, schools, parents,
and computer enthusiasts and hobbyists. Scratch is available in many languages,
including English, Spanish, German, French, Italian, Hungarian, Hebrew, Polish,
Dutch, Romanian, and Russian. The Scratch website, located at http://scratch
.mit.edu and shown in Figure 1.14, helps bring together people from around the
world and facilitates the development of the Scratch community.

19

http://scratch.mit.edu
http://scratch.mit.edu

20

Chapter 1 = Introducing Scratch

. oo
R vy [as)
S) N W —

Figure 1.12
Automating a sprite with a script.

Figure 1.13
Saving your new Scratch application project.

Joining Scratch’s Global Community 21

'€ Scratch | Home | imaging, program, share - Windows Internet Explorer

@u e http://scratch.mit.edu/

W k| 2 Seratch| Home | imagine, program, share

[] [Yo

! Search P~

fi v B v = v [2rPage > (i Tooks ¥ @~ &

. | . e W e
O AT

imagine » program « share

T home projects galleries .suppcrl -forurns"abnut mystuﬁ'.

Login or Signup for an account

=R

I:I SR
™ pm

Puzzle
by Haovira

4

My Sports
Science

Project

Reflex Tester

by forcema:

Nasier

by stevii

m

'

P : l.ri_ 5 L,,_,J_\I Download Scratc
mave (D) staps £ b 5 i Get the latest version
play vound 5| BOWNLOAD How: of Scratch for

Windows or Mac.

Scratch@MIT Conference

Newest Projects See more
Join educators, researchers, and
-y other members of the worldwide
“\é SUCK ,..E.'.BG..... - Scratch community at MIT on
BV July 24-26.
. 0 T h
Learn more
cat ammaton SnCK RPG E F@atured Ga“er.ies
by rvev® by_mkolpnii by magmafour
Black History ...
Featured Projects See more ~b—| PaddlelSees P...

g Serolling Proj...

See more

Scratch Club
Scratch Story Projects -

Figure 1.14
The Scratch website is the linchpin supporting the growth and interaction of the Scratch community.

The Scratch website provides access to all kinds of resources that help Scratch
programmers learn more about the language. It provides access to online doc-
umentation and training videos. It also provides access to the help screen packed
with documentation on how to work with Scratch code blocks.

Sharing Your Application Projects

The Scratch website promotes application project sharing by allowing Scratch
programmers to upload their projects and make them available to anyone vis-
iting the website. This allows Scratch programmers to show off their work and to
learn from the work of others. In fact, every Scratch project that is uploaded to
the website can be downloaded and used as the basis for creating new projects. As

22

Chapter 1 = Introducing Scratch

'€ Scratch | Newest projects - Windows Intemnet Explorer =R EoR x|

o -

@@ ' | hittp://scratch.mit.edu/channel/recent b~

W <fe | 2 Scratch | Newest projects [fi v B v = v [2rPage > (i Tooks ¥ @~ &
N D AT LT home projects galleries support forums about my stuff

iioading » prasrins » dhare Login or Signup for an account [search

m

Explore Projects new projects
Do you want to know how to upload your project?

["newest | featured | top viewed | top loved |

Showing: 1-10 of 88419

1121314151617181...18842

Inventor Joe Movie Part One

By: dearkids

Views: 4

Description: My new series called Inventor Joe. In this episode, he creates an alien!
2
e

shoot the guy
Ry: rpoekkni
Views: 3

r ﬂi, Description: have fun

NEW YORK LIFE AD!!

By: grandma_kiss
Views: 4

Mt i TN T AT BICE IR AALCTIT WA T T AN
m

Figure 1.15
The Scratch website facilitates sharing by promoting Scratch projects and making them available for

download.

Figure 1.15 shows, the Scratch website actively promotes Scratch applications
on its project page (http://scratch.mit.edu/channel/recent), which means
that you can expect to see any Scratch projects that you upload posted there as
well.

The Scratch website lets members post their uploaded Scratch projects in gal-
leries. You can post your Scratch projects in different galleries or create a gallery
of your own and even control whether anyone else is allowed to upload their
projects into it. As Figure 1.16 demonstrates, the Scratch website actively pro-
motes member galleries.

http://scratch.mit.edu/channel/recent

Joining Scratch’s Global Community

'€ Scratch | Galleries - Windows Intemet Explorer ==
@u - E http://scratch mit.edu/gallenies/browse/newest '|*'y X | | Yahoo! Search b~
W ke | 2 Scratch | Gallenes [i~ B v = v [2rPage > (i Tooks ¥ @~ &}

-

N D AT T home projects galleries suppurl”forurns”abnut mystuff. [

imagine « program » share Welcome, 3904 Logout l AR

m

Explore or create a new gallery

Foxes of the Wild

Description: Here is a brand new series I'm making called Foxes of the Wild! If you want to join, tell
me what you want to look like...or just go here to create your tox, wolf, or any wild dog! Must ask tor
persmiison to join! http: / /kooyote.deviantart com/art/Create-A-Wolf-73582523
&amp;amp;amp;amp;amp; amp; amp; amp;amp;amp;t;---nk to create your wild dog! Tribes:
Tribe of Lighting Storms: Alpha Male: Wolf (Wolf_Warrior) Alpha Female: Cynder (Warriormosspaw)
Deputy: Shadow (Monkeypiefairy) Lower-Class: Angel (Hazelleafkitty) Gabbster (MaskedStar) Storm
(Maskedstar) Coal (Maskedstar) Tribe of Bloodfangs: Alpha Male: Bloodfang(Maskedstar) Alpha
Female: Deputy: Lower Class: Tribe of Still Water: Alpha Male: Fluffy (sparkygirl) Alpha Female:
Ueputy: Lower-Class: Iribe of Anciet Paws (Heaven): Alpha Male: Alpha temale: Ueputy: Lower-Class:
Tribe of Shadows (Umm...down there__): Alpha Male: Alpha Female: Deputy: Lower-Class:

Number of Projects: 13

Modern Warfare

Description: this is a war gallery. there will be an Alpha team and a Bravo team. the two teams will
fight eachother in a war. each team will assign 2 team leader, and each player will chose a primary
weapon fur Uremn W use during e ballles., please comment il you wanl W join. Alpha Team:
Gaaragirl-medic extraevil-sniper Bravo Team: tasle1-sniper 47fg74-automatic weapon Rules: 1. 1 am
the war moderator. i keep things under control. 2. you will fight fairly and honestly. Upcoming
Battles: Saturday, March 1, 14:00Eastern 10:00Pacific

Mumbhar nf Dradackes 15
¥ m]

Figure 1.16
You can create your own gallery and use it to promote your programming skills.

If you decide to create your own gallery, you can customize it by assigning it a
name and a description and by determining whether you want to let anyone else
upload Scratch projects into it.

Registering with the Scratch Website

In order to upload your Scratch projects to the Scratch website, you must sign up
for a free account, which you can do by clicking on the sign up link at the top of
every page on the Scratch website. Clicking on this link opens the Create an
Account page, shown in Figure 1.17.

The Scratch website gives its members the ability to comment on any Scratch
application project that is uploaded to the website. The website also provides

23

24

Chapter 1 = Introducing Scratch

'€ Scratch | Signup - Windows Intemet Explorer E=R R =X
@\‘J ' http://scratch.mit.edu/signup b~
W Scratch | Signup [I o v [Page ¥ (Tooks > (@~ &

Login or Signup for an account :| | search

imagine « program » share

Create an account

|
Username .

Password | !
Confirm Password l:l I

Rirth date xie i
Gender ==

Country e

State/Province: |
ae[]

* mandatory fields

Privacy Policy | Terms of Use | Contact Us

4 m]

Figure 1.17
Registering for a free account on the Scratch website.

access to a collection of forums designed to host conversation between students,
teachers, and Scratch enthusiasts from all over the world.

Note

You will learn more about how to share your Scratch projects when you get to Chapter 13,
“"Sharing Your Scratch Projects Over the Internet.”

Keeping In Touch

In addition to facilitating project sharing and allowing comments to be posted
about projects, the Scratch website hosts a number of online forums at http://
scratch.mit.edu/forums/, as shown in Figure 1.18.

http://scratch.mit.edu/forums/
http://scratch.mit.edu/forums/

Joining Scratch’s Global Community 25

8 e Frrmimc ~ Winidows nteiriet Exploser =sicr -
. -
@u > | 2 hitpe//scratch,mit.edu/forums/ - | 4| X | | Yahoo! Search 2 vl

‘:: b £} Seratch Forums [| Eﬁ > B @ 0|5k Page _QrTonlsv @v n

AR 3

Login or Signup for an account -Eﬂ

imagine » program * share

Scratch Forums

m

You are not logged in. [

Forum Topics Posts Last post

Annnuncements prl 1043 Today 14:44:58 L 4

Watch here for the latest relzases of Scratch, and other by andresmh

announcements.

Show and tell 932 5198 Today 14:13:13

Tell everyone about your projects and galleries. by SonicPaops

FAQ 38 450 Tuoday 02:4%:36

Frequently Asked Questions by SimpleScratch

All About Scratch RRO 4767 Today 14:74:15

Questivies dboul Scralcl? o guestivn is oo basic! Ly marthes34

Educators 124 T4 Today 13:41:0%

Misruss how yoir're nking Seratech in educatinn. hy FPSFelix

Advanced Topics 4 2283 Today 14:16:50

Talk about technical aspects or advanced features. by Lucariob21

Suggestions 44 3194 loday 14:18:32

ldeas for the next version of Scratch or improvements to by Heybrian

the Website? Post here.

I roubleshooting 541 2660 loday 12:12:16 x
4| m]

Figure 1.18
Members of the Scratch community can communicate freely and discuss ideas using the forums hosted
on the Scratch website.

As Figure 1.18 shows, forums have been set up to address the following range of
topics:

= Announcements
m Show and tell

s FAQ

= All About Scratch

Educators

m Advanced Topics

26

Chapter 1 = Introducing Scratch

m Suggestions

m Troubleshooting

These forums provide the ability to learn directly from other Scratch pro-
grammers. By reading the discussions that are posted, you can learn new pro-
gramming techniques and find out about problems encountered by other
programmers and their solutions. Most important of all, you can post questions
and get answers to those questions.

Summary

This chapter has provided an overview of the Scratch language and it capabilities.
It showed you how to install Scratch on your computer and then demonstrated
how to create your first Scratch application. It also introduced you to the Scratch
website and explained the importance of setting up an account and becoming an
active member of the Scratch community.

CHAPTER 2 .

GETTING COMFORTABLE WITH
THE SCRATCH DEVELOPMENT
ENVIRONMENT

To become an effective Scratch programmer, you need to become intimately
familiar with its integrated development environment, or IDE. In this chapter,
you will learn about the stage on which applications execute and the sprite list
that Scratch uses to display and organize sprites used in your applications. You
will also learn how to work with editors that create scripts, costumes, and sound
effects. You will also learn all about Scratch’s paint program, which you can use
to create your own custom graphics files. By the time you have completed this
chapter, you will have a solid understanding of all of the features and capabilities
of the Scratch IDE and will be ready to begin using it to create your own Scratch
application projects.

An overview of the major topics covered in this chapter includes:

m How to work with menu and toolbar buttons

m How to add, remove, and modify the sprites that make up your Scratch
applications

m An explanation of the coordinates system used to control sprite placements
on the stage

m How to edit and modify scripts, costumes, and sounds

m How to create new sprites using Scratch’s built-in Paint Editor

27

Chapter 2 = Getting Comfortable

Getting Comfortable with the Scratch IDE

Scratch is a graphical programming language. Scratch applications are created by
executing Scratch projects made up of different types of media, including gra-
phics and sound, using scripts made up of different code blocks. Scratch projects
are created using its IDE. As shown in Figure 2.1, Scratch’s IDE is composed of
numerous components.

Project
Notes

Current Execution
Menu Bar Sprite Info Toolbar Buttons

. RA W

& 2 S

Stage
whe@r@
wto
gide Bsecs tox D @
change x by @)
Mouse

set x te @)
Coordinates

thange y by @)

set y to @

i on edge, haumes

e il Sprite
B v position IR List
B drection

Blocks Palette Scripts Area Presentation New Sprite
Mode Buttons

Figure 2.1
The Scratch IDE facilitates the development and execution of Scratch applications.

Getting Comfortable with the Scratch IDE

Together, all of the components identified in Figure 2.1 provide a robust and
powerful, yet initiative and fun, work environment, providing everything needed
to develop Scratch applications. The rest of this chapter will offer a detailed overview
of each of the major components that make up the Scratch IDE.

Getting Familiar with Menu Bar Commands

Like most graphic applications, the Scratch IDE has a menu bar made up of a
collection of buttons located at the top of the IDE, as shown in Figure 2.2.

These buttons provide access to commands that allow you to create, open, and
save Scratch projects as well as share them on the Internet, undo previous
commands, change the language used by the IDE, and much more. The following
list provides an explanation of each of the buttons that make up the menu bar.

m New. Creates a new Scratch application project.

m Open. Opens an existing Scratch application project.

m Save. Saves the current Scratch project (with a file extension of .sb).
m Save As. Saves the current Scratch project under a new name.

m Share! Uploads a copy of the project to the Scratch website (http://scratch
.mit.edu) where it can be made available for viewing and downloaded by
other Scratch programmers.

m Undo. Restores the last script, code block, or sprite deleted from the
application project during the current working session.

m Language. Lets you specify the language to be used by the Scratch
IDE.

m Extras. Displays a popup list from which you can select one of the following
commands: Import Project, Start Single Stepping, Compress Sounds, or
Compress Images.

N Dpen Save Save As Share! Undo | | Language | | Extras Want Help?

Figure 2.2
The menu bar provides easy access to commands that you can use to create and save Scratch projects.

29

http://scratch.mit.edu
http://scratch.mit.edu

30

Chapter 2 = Getting Comfortable

= Want Help? Displays a page that provides a link to the Scratch website as
well as to the following set of resources: Reference Materials, Tutorials, or
Frequently Asked Questions.

Most of the commands listed above are self-explanatory. However, the last three
commands merit additional explanation. When clicked, the Language button
displays a menu of programming languages from which you can select.
Depending on the language selected, a complete translation may be available. In
other cases, only scripts and code blocks may be translated.

Tip

You can display a tool tip for any of the button controls shown on the Scratch IDE by moving the
mouse pointer over the button.

When clicked, the Extras button displays a menu that has the following options.

m About. Displays a popup window that provides information about the
version of Scratch being used.

s Import Project. This command imports all of the sprites and backgrounds,
along with any related scripts, from the specified project into the current
project. As such, this command makes the sharing and movement of sprites
and backgrounds between Scratch projects a snap.

m Start Single Stepping. This command tells Scratch to execute an application
a step at a time, allowing you to observe the execution flow of code blocks.
This command will be discussed more thoroughly in Chapter 15, “Finding
and Fixing Program Errors.”

m Compress Sounds. This command compresses any sound files used by the
current application project to reduce the project’s size. This is important
because the Scratch website imposes a 10MB limit on the size of Scratch
applications.

s Compress Images. Like the Compress Sounds command, this command
compresses any graphic image files used by the current application project
to reduce the project’s size. By compressing the size of your application,
you can sometimes reduce large Scratch projects enough to allow them to
upload.

Getting Comfortable with the Scratch IDE 31

The last button on Scratch’s menu bar is the Want Help? button. When clicked,
this button opens a browser window that provides access to the following
resources.

Getting Started. Opens the “Getting Started with Scratch” PDF user guide.

Help Screens. Displays a collection of help screens that document the use
and purpose of every Scratch code block.

m Reference Guide. Opens the Scratch “Reference Guide” PDF reference file.

Visit the Scratch support page. Displays the Scratch support web page
located at http://scratch.wik.is/Support.

Running Scratch Applications on the Stage

The stage is the area on the Scratch IDE, located in the upper-right side, as shown
in Figure 2.3, where your Scratch applications execute. The stage provides a place
for the sprites that make up your applications to interact with one another and
the user.

(&) (7] (=])(s) il

Figure 2.3
The stage provides the canvas upon which sprites are displayed and interact with one another.

http://scratch.wik.is/Support

32 Chapter 2 = Getting Comfortable

X-axis .
5 e
. | (-240, 180) (240, 180}
o
E ‘0.0
y
(-240, -180) (240, -180)
L] L]
Figure 2.4

Sprites are placed on the screen and moved around using a system of coordinates.

The stage is 480 units wide and 360 units high. The stage is mapped out into a
logical grid using a coordinate system made up of an X-axis and a Y-axis, as
demonstrated in Figure 2.4.

As you can see, the X-axis runs from coordinates 240 to —240, and the Y-axis
coordinate runs from coordinates 180 to —180. The middle of the stage has a
coordinate location of (0, 0). Scratch keeps you informed of the pointer’s location
whenever it is moved over the stage by displaying its (X, Y) coordinate position in
the mouse x: and mouse y: fields just beneath the bottom-right side of the stage.

The stage can be assigned one or more backgrounds, allowing you to change its
appearance during application execution. By default, all Scratch applications are
assigned a blank background. You can add new backgrounds by clicking on the
Stage thumbnail, located on the left-hand side of the sprite list, and then clicking
on the Backgrounds tab located just above the scripts area. Like sprites, the stage
can be assigned its own scripts and sound effects.

Tip

If you right-click on an open area on the stage, a popup menu will appear, displaying the following
menu items:

m Grab screen region for new sprite. Makes a copy of a selected portion of the stage and uses
it to create a new sprite.

m Save picture of stage. Saves a copy of the stage as a .GIF file.

Getting Comfortable with the Scratch IDE

Running Applications in Presentation Mode

As you saw in Chapter 1 when you created the Hello World project, Scratch runs
your applications on the stage within the IDE by default. However, if you click on
the Presentation Mode button, located just beneath the bottom-left corner of the
stage, you can run your Scratch application project in Presentation mode. To see
how this works, click on the Open button located at the top of the Scratch IDE
and then locate and open the Hello World project. Next, click on the Pre-
sentation Mode button to switch to full-screen mode. Once in Presentation
screen mode, single-click on the sprite representing the kitten and watch as your
application executes, as demonstrated in Figure 2.5.

You can exit Presentation mode at any time either by clicking on the Exit Pre-
sentation Mode icon located just above the upper-left side of the stage or by
pressing the Escape key.

Controlling Application Execution

Whether running your application from the IDE’s stage or in Presentation mode,
you can automatically start any scripts that begin with the green flag control
block by clicking on the green flag button located in the upper-right corner of the
IDE, as shown in Figure 2.6. This same button is also available in Presentation
mode. By clicking on the red stop button located right next to the green flag

Hello World!

Figure 2.5
Running a Scratch application project in Presentation mode.

33

34

Chapter 2 = Getting Comfortable

@0

Figure 2.6
The green flag and red stop buttons provide control over script execution.

button, you can stop the execution of your applications any time you finish
working with them.

Working with the Sprite List

Scratch applications are made up of sprites that interact with one another as they
move around the stage. Each sprite that makes up a Scratch application is dis-
played as a thumbnail in the sprite list area, located on the lower-right portion of
the Scratch IDE, as shown in Figure 2.7. Although it has no impact on a Scratch
application, you can reorganize the order in which sprites are displayed in the
sprite list by dragging and dropping thumbnails to any location that makes sense
to you.

In addition to a thumbnail, Scratch also displays the name of each sprite as well as
the number of scripts and costumes belonging to each sprite. To work with a
sprite and edit its scripts, costumes, and sound effects, just click on its thumbnail.
The currently selected sprite is highlighted by a blue outline. Once selected, you
can click on the Scripts, Costumes, and Sounds tabs located at the top of the
script area to edit a sprite’s scripts, costumes, and sound effects.

Z @ & .

Spritel ippearing_ban Bouncy_Ball Sprite2

1 zcript

o ez

2 backgrounds

Sprite3

Figure 2.7
The sprite list displays a thumbnail for each sprite in an application.

Getting Comfortable with the Scratch IDE

If you right-click on a sprite’s thumbnail, the following list of menu options is
displayed:

m Show. Centers a sprite on the stage, placing it on top of all other sprites.

m Export this sprite. Exports a sprite as a file, making it available to be
imported into other Scratch projects.

m Duplicate. Makes a copy of the sprite.

m Delete. Removes a sprite from the project.

Tip

You can also export, duplicate, and delete sprites by right-clicking on any sprite on the stage and
then selecting the corresponding menu items that are displayed.

The sprite list also displays a thumbnail representing the application project’s
stage. When the stage’s thumbnail is selected, you can add scripts to the stage,
modify the stage’s background by assigning it one or more graphic files, and also
add sounds to the stage.

Generating New Sprites

Scratch makes it easy for you to work with sprites by providing three different
options for adding them to your applications. These options are accessed through
the New Sprite buttons located just below the stage, as shown in Figure 2.8.

When clicked, the Paint New Sprite button starts Scratch’s Paint Editor program.
This program provides everything you need to draw new sprites on a transparent

Paint New Choose New Get Surprise
Sprite Sprite from File Sprite

Figure 2.8
The New Sprite buttons provide access to tools for adding and creating new sprites.

35

36

Chapter 2 = Getting Comfortable

T

Costurnes

Dcs_ktop

Fantasy Lellers Peuple

Docurrents

COmEJter | | | |

Thams Transpon Latin

Picturas

DK Cancel

Figure 2.9
Scratch supplies easy access to a wide selection of ready-made sprites.

background. You will learn the ins and outs of how to work with the Paint Editor
program a little later in this chapter.

When clicked, the Choose New Sprite from File button displays the New Sprite
window shown in Figure 2.9, providing access to different collections of graphic
files that you can add to your Scratch applications as sprites. To select and add a
sprite, all you have to do is to drill down into one of Scratch’s folders, find the
sprite you want, and then click on the OK button. The sprite that you selected
will then appear in the center of the stage, and a thumbnail representing the sprite
will be added to the sprite list.

The Get Surprise Sprite button randomly retrieves one of Scratch’s ready-made
sprites and adds it to your application project. It can be used to generate all kinds
of wacky projects.

Tracking Mouse Pointer Location

Asyou learn how to develop your own Scratch applications, you will need to keep
track of the initial placement and subsequent movement of sprites on the stage.
Scratch assists you in this task by keeping track of mouse-pointer movement
whenever you move the pointer across the stage (see Figure 2.10). You can use

Getting Comfortable with the Scratch IDE

rouss % -49
rmouze yi 43
Figure 2.10

The Scratch IDE makes it easy to track the mouse-pointer’s location when it moves around the stage.

@ ™ 3 F A | e
NP N2
| | ‘ | ‘] | | |

Move Duplicate Delete Grow Shrink
Sprite Sprite

Figure 2.11
The Scratch toolbar provides tools for interacting with sprites.

this information to identify the coordinates data that you need to incorporate
into your application code as you develop the programming logic that drives
your Scratch projects.

Working with the Scratch Toolbar

Another important component of the Scratch IDE is the toolbar, shown in Figure
Figure 2.11. The toolbar provides access to commands that you can use to
interact with and control the sprites that make up your applications.

The following list summarizes the functionality provided by each of the toolbar’s
buttons:

m Move. Allows you to drag and drop sprites to different locations on the stage
(default toolbar selection).

m Duplicate. Makes a copy of the currently selected sprite, including its
scripts, costumes, and sounds, providing an easy way of adding new sprites
to your applications. Once a sprite is duplicated, you can customize the
new copy of the sprite as you see fit.

m Delete. Removes a sprite, including all its scripts, costumes, and sounds,
from the project and removes its thumbnail from the sprite list.

37

38

Chapter 2 = Getting Comfortable

m Grow Sprite. Increases a sprite’s size, in case its actual size does not meet the
needs of your application.

m Shrink Sprite. Decreases a sprite’s size, in case its actual size does not meet
the needs of your application.

By default, the Move button is always selected. However, you may select any of
the other toolbar buttons by clicking on them and then clicking on the sprite that
you want to work with.

Switching Between Code Block Groups

Like applications created by any programming language, Scratch applications
execute program code made up of collections of code blocks that manipulate
sprites and interact with the user. Scratch’s program code is organized into
scripts belonging to sprites. Every sprite in an application can be assigned one or
more scripts. In addition, the stage can also execute its own scripts.

As you have already seen, the first step in creating a script is to select the sprite (or
the stage) to which the script will belong. This is done by clicking on the appro-
priate thumbnail in the sprites list. You can then add code blocks by dragging the
blocks from the blocks palette and dropping them into the scripts area (when the
Script tab is selected). The blocks palette is organized into two sections. The top
section contains eight button controls, each of which represents a different cate-
gory of code block. Each of the buttons is color coded. The currently selected
button is easily identified because it is filled in with its assigned color. The left-hand
edge of the unselected buttons shows the color of the code blocks belonging to its
category. For example, Figure 2.12 shows how the blocks palette looks when the
Motion button has been selected.

Trick

You can right-click (Control-click on Mac OS X) on any code block and then select Help from the
resulting popup menu to get help information on any code block.

Getting Comfortable with the Scripts Area

The last major part of the Scratch IDE that you need to become familiar with is
the scripts area, which consists of two major sections. The Current Sprite Info
section, located at the top of the scripts area, displays information about the
currently selected sprite. The rest of the scripts area is controlled by three tabs,
which allow you to add scripts, costumes, and sounds to sprites.

Getting Comfortable with the Scratch IDE 39

Motion Control

Looks sensing

Suumd § Nunnbsers

Men Wariables

move steps
turn (¥ degrees

T 15 e

point in diraction ik

go to x: [v: (@
go to

alide M secs to x: [0 v: @)

change » by 0
==l = Lo @)
change y by

set y to)
if on edge, bounce
x position

v position
diraction

Figure 2.12
Each category of code block is designed to accomplish a related set of tasks.

Figure 2.13
Changing a sprite's name and viewing detailed information about the sprite.

Examining Sprite Details

The Current Sprite Info section displays the name currently assigned to the
selected sprite, which, as demonstrated in Figure 2.13, is Spritel. You can change
a sprite’s name by typing over it. The sprite’s current coordinates and direction
are displayed just beneath its name, and the sprite’s currently assigned costume is
displayed just to the left of its name.

40

Chapter 2 = Getting Comfortable

[Costumes W)
Scratch] Fantasy
[Letters
E O !
Desktop Peaple
[Things
B [Transportation
Diacurnents
[
Computer
Mew Filename: Spritel
114 Cancel
Figure 2.14

Exporting a sprite as a stand-alone graphic file.

Take note of the blue line that is displayed on the thumbnail in the Current Sprite
Info section. It shows the sprite’s currently assigned direction. You can change
the sprite’s direction by dragging the outside edge of this line to a new direction.
If you do not like the direction that you have set for the sprite, double-click on
the sprite to reset it back to its default direction (90-degree angle).

You can export the scripts as a stand-alone line by clicking on the Export button.
This opens the Export Sprite window shown in Figure 2.14, allowing you to
specify the location where you want to save the sprite, making it available for use
in other Scratch application projects.

Just beneath the Export button is a graphic file representing a padlock. Clicking
on this image toggles the graphic between a locked and unlocked state. When set
to locked, Scratch prevents the sprite from being dragged around the stage by the
user when the script is run in Presentation mode or when run from the Scratch
website.

Just to the left of the sprite’s currently selected costume are three buttons that you
can use to specify the sprite’s rotation style. These three buttons are mutually
exclusive, meaning that you can only select one. Table 2.1 identifies the rotational
style represented by each of these buttons.

Getting Comfortable with the Scratch IDE 41

Table 2.1 Sprite Rotational Buttons

Button Name Description
Can rotate Rotates the sprite’s costume by 360 degree when the sprite's
direction is changed.
Only face left-right Toggles the direction that the sprite’s costume faces from left to
right and vice versa.
B Don't rotate Maintains the sprite costume’s current direction.
Tip

To get a better feel of the effect that Scratch’s rotational buttons have on a sprite, click on each of
them and observe the rotational movement of the sprite costume in the Current Sprite Info section.

Editing Scripts

As you have already seen, Scratch scripts are created by dragging code blocks
from the blocks palette onto the scripts area (when the Scripts tab has been
selected). Of course, the code blocks must be added in a manner that makes
logical sense, which is what Chapters 5 through 22 are designed to teach you.

Tip

As you add new scripts and modify existing ones, it is easy to leave the scripts area in a mess. One
way of dealing with this situation it to spend a few minutes dragging and dropping scripts so that
they line up and are evenly spaced. However, a much faster and easier option is to right-click on a
free area within the scripts area and then click on the clean-up option located in the popup menu
that is displayed. In response, Scratch will realign all of your scripts for you.

Adding Costumes

A sprite can have one or more costumes, allowing it to change its appearance as
an application executes. A sprite must have at least one costume. For example,
Figure 2.15 shows a sprite that has two costumes. Each costume is assigned a
unique name and number (displayed just to the left of the costume’s image).

By default, Scratch only displays a sprite’s first costume. You can drag and drop
costumes to change their position in the list. When moved, the number assigned
to the costume is automatically changed as well.

Scratch gives you three different ways of adding new costumes to sprites. For
starters, you can click on the Paint button. This opens the Paint Editor program,

42 Chapter 2 = Getting Comfortable

| Sounds Tl v
@ & Animal
Sounds [T Effects
[Electronic
L =
Desktop Hurnan
[Instruments
5] [Music Loops
DSl [Percussion
[woeals
5]
Computer
23]
Music:
OK Cancel
Figure 2.15

Importing and assigning a sound file to a sprite.

which you can use to draw a new costume. You can also add a new costume to a
sprite by clicking on the Import button and specifying an image file from a folder
on your computer. Lastly, you can drag and drop an image file from the Internet
or your desktop onto the scripts area when the Costumes tab is selected.

Note

Scratch can work with different types of graphic files, including GIF, JPG, BMP, and PNG files. Scratch
can also work with animated GIF files. An animated GIF file is a graphic made up of two or more
frames, each of which is displayed as an automated sequence when the GIF file is displayed.

Once added, you can modify a costume by selecting it and clicking on the Edit
button, which opens the Paint Editor. You can also add a new costume to a sprite
by selecting an existing costume and then clicking on the Copy button. Once the
copy of the costume has been added, you can click on its Edit button, allowing
you to modify it using the Paint Editor.

You can delete a costume from a sprite by selecting it and then clicking on the
round Delete button to the right of the Copy button. You can also turn a costume
into a sprite or export it as a stand-alone costume by right-clicking on it and
selecting the appropriate option from the popup menu that appears.

Getting Comfortable with the Scratch IDE

Note

The stage can be assigned a graphic to be used as a background upon which the application’s
sprites are displayed. In fact, the stage can be assigned a series of backgrounds, allowing an
application to change backgrounds during application execution. To view, edit, and make a copy
of a background, select the stage thumbnail located in the sprite list. When you do this, the
Costumes tab in the scripts area changes to the Backgrounds tab, allowing you to modify and
work with application backgrounds. From here you can also create new backgrounds yourself by
clicking on the Paint button. This opens Scratch’s Paint Editor program, discussed later in this
chapter, allowing you to create any background you want. You can also click on the Import button
to add an external graphic file to your application as a background.

Adding Sound Effects

Just as sprites can have different costumes, you can also assign one or more sounds
to them (or to the stage), which can be played during application execution, either as
background music or noise or as sound effects during game play. Scratch can play
back MP3 files as well as most WAV, AU, and AIF audio files. To view the sound files
associated with a sprite or to record or import a new file, select the sprite’s thumbnail
in the sprite list and then click on the Sounds tab in the scripts area. A list of the
sound files belonging to the sprite is displayed, as demonstrated in Figure 2.16.

.i‘..".'.i’.!‘f...?.!?.‘!‘.‘.'.‘.'.‘..'.."i‘.‘_‘ Y Bl E—

| ew sound: | (CETEZD) (TS

Figure 2.16
Adding and editing sound files.

43

44

Chapter 2 = Getting Comfortable

Once the Sounds tab has been selected, you can perform any of the following
actions on any sound files that belong to the sprite:

m Change the name used to refer to the sound within the application.
m Click on the Play button to listen to the sound.
m Click on the Stop button to halt sound playback.

m Click on the Delete button to remove the sound from the application project.

In addition to interacting with a sprite’s existing sound file, you may add new
sound files by clicking on the Record button. In response, the Sound Recorder
window appears, as shown in Figure 2.17, allowing you to record and save a new
sound file. Of course, to record your own sound files, your computer will need to
have a microphone.

You can also add new sound files to your Scratch application by clicking on the
Import button, which opens the Import Sound window, as shown in Figure 2.18,
allowing you to select a sound file. Scratch provides access to tons of prerecorded
sound files. By default, the Import Sound window displays a listing of folders
containing different collections of sound files.

Keeping Project Notes

Another important feature of the Scratch IDE is the ability to add and update
project notes. Scratch allows you to add project notes when you first save your
application project. Once they are saved, you may update your project’s notes at
any time by clicking on the Project Notes icon located in the upper-right corner of
the IDE. In response, the Project Notes window displays, as demonstrated in
Figure 2.19.

Figure 2.17
Recording a new audio file to be used as part of a Scratch application.

Getting Comfortable with the Scratch IDE

L Sounds

Sounds [T Effects
[Electronic
= =
Desltop Hurnar
[Instrurnents
B8 3 Music Loops
DocuTente [Percussion
[wocals
i
Cornputer
]
Music:

0K

@ (™ el

Figure 2.18

Importing and assigning a sound file to a sprite.

This Scratch application dernonstrates how to
rmove a sprite, change a sprite’s color, add a
background to the stage, and play muosic,

0K Cancel

Figure 2.19

Viewing and updating Scratch application project notes.

45

46

Chapter 2 = Getting Comfortable

The Project Notes window operates like a simple Notepad program, allowing you
to type in any text you want.

Tip

Use the Project Notes window to help document your Scratch applications, leaving behind
information that explains the application’s purpose and why you designed it the way you did. If
you plan on uploading your project to the Scratch website, then project notes take on additional
value. Specifically, text saved as notes is displayed on the same web page as your project and can
therefore provide instructions for running your application.

Creating New Sprites Using Scratch’s Paint Editor

In addition to using the sprites supplied with Scratch and graphics that you
acquire from the Internet, you can always create your own sprite using any
graphic/paint program. Although it does not have all of the bells and whistles that
applications like Corel Paint Shop Pro or Adobe Photoshop have, Scratch’s built-in
Paint Editor, shown in Figure 2.20, offers everything needed to draw or modify
graphics for use as sprites and backgrounds.

As Figure 2.20 demonstrates, Scratch’s Paint Editor is divided into multiple
components. Thanks to Scratch’s cross-platform design, the Paint Editor looks
and operates identically on both Microsoft Windows and Mac OS X.

Examining the Drawing Canvas

Links to the Paint Editor program are located just under the stage and within the
Costumes and Backgrounds tabs located in the scripts area. The Paint Editor
program can be used to create or modify new sprites, costumes, and back-
grounds. Most of the space on the Paint Editor’s window is dedicated to a
drawing canvas. To draw on the canvas, you select different drawing commands
from the toolbar and then use the mouse to draw on the canvas. You can work
with different colors and apply a range of special effects.

If the size of the graphic being worked on exceeds the available area, scrollbars are
enabled on the right-hand side and the bottom of the drawing canvas, allowing
you to view all parts of the graphic. You can also use the Zoom In and Zoom Out
buttons located at the bottom of the Paint Editor window to temporarily increase
or decrease the magnification of the drawing canvas.

Creating New Sprites Using Scratch’s Paint Editor 47

Button Drawing
Controls Canvas
| ditor
*. —
Trport 211z (0]l _-'f]_ = tlear
lindn Redn
Toolbar &\ & & 0o —
N|T|@| & |7
Options T
Area irush size: v L]
Current n: Slider
Color : Controls
Settings i
I
’~ ped
UE Lancel
Color Rotation Zoom
Palettes Control Control
Figure 2.20

Scratch’s built-in Paint Editor program provides everything needed to create sprites and costumes.

Working with the Toolbar and Options Area

When creating or editing a graphic image on the drawing canvas, the buttons
located on the Paint Editor’s toolbar provide access to essential features and
functionality. The following list offers an overview of the functionality provided
by each toolbar button:

m Paintbrush. Allows you to draw freehand on the drawing canvas using the
current foreground color and brush size.

m Eraser. Allows you to erase selected portions of the drawing canvas using the
current eraser size. Erased portions of the drawing canvas are returned to a
transparent state.

48

Chapter 2 = Getting Comfortable

Fill. Allows you to fill in enclosed areas with either a gradient or a solid
color, depending on the selected option specified in the options area.

Rectangle. Allows you to draw filled-in or outlined rectangle shapes using
the current foreground color.

Ellipse. Allows you to draw filled-in or outlined ellipses using the current
foreground color.

Line. Allows you to draw straight lines using the current foreground color.

Text. Allows you to include text as part of a drawing using the current font
type and size.

Selection. Allows you to select a rectangular portion of the drawing canvas
and move it to a different part of the drawing canvas (cut and paste).

Stamp. Allows you to select a rectangular portion of the drawing canvas and
copy it to different parts of the drawing canvas (copy and paste).

Eyedropper. Allows you to select the foreground color.

Most of the toolbar buttons accept configuration options that further refine the
functionality provided by the button control. For example, Figure 2.21 shows the
four configuration options that are provided when the Fill button has been selected.
These options set the fill style that is applied and include the application of a solid
color and the use of a horizontal gradient, vertical gradient, or radial gradient.

Note

A gradient is a color created by blending together the foreground and background colors.

«|<[&|0[o]
N T (] & | 7

-

|

Figure 2.21
The content of the options area changes based on the selected toolbar button.

Creating New Sprites Using Scratch’s Paint Editor

Working with Button Controls

As shown in Figure 2.22, Scratch’s Paint Editor program includes a number of

button controls that can initiate an assortment of different actions.

The following list identifies each of these buttons and explains its purpose:

m Import. Opens an image from a graphic file stored on your computer.

m Grow. Increases the size of the drawing canvas, allowing you to focus in on a

particular area.

m Shrink. Decreases the size of the drawing canvas.

= Rotate counterclockwise. Rotates the drawing canvas counterclockwise.

= Rotate clockwise. Rotates the Drawing canvas clockwise.
m Flip horizontally. Flips the drawing canvas horizontally.

m Flip vertically. Flips the drawing canvas vertically.

m Clear canvas. Clears any graphics currently displayed on the drawing canvas.

m Undo. Undoes the last action that you performed in the Paint Editor.

m Redo. Redoes the last undone action.

Import

Import

Undo

Undo Redo

Figure 2.22
The Paint Editor provides access to key functionality through various button controls.

Rotate

Clockwise
Flip

Shrink Vertically
EC_I B =) _'ﬂ'__ "0 al’_
Grow Flip
Horizontally
Rotate

Counterclockwise

Clear
Canvas

Clear

49

50

Chapter 2 = Getting Comfortable

Specifying Color Settings

The Paint Editor lets you specify current color settings for both foreground and
background drawing using the current Color Settings control located on the left-
hand side of the Paint Editor window, just under the options area. To set the
current foreground color, click on the top square and then select a color from one
of the color palettes that are displayed beneath the control. Likewise, you can set
the current background color by selecting the bottom square and then selecting a
color from one of the color palettes.

Configuring a Sprite’s Rotation Center

One final but very important Paint Editor feature that you definitely need to
know how to use is the Set Rotation Center button located in the lower-left
corner of the Paint Editor window. When clicked, this button displays a set of
cross-hairs on the Paint Editor’s drawing canvas, as demonstrated in Figure 2.23.
You can then use drag and drop to move the cross-hair over the portion of the
sprite that you want to set up as the sprite’s rotational center when the sprite is
rotated on the stage.

e | [e -
Import v E cH gy = Clear
Urndu Redu

&\ & 0|0
\N|T|& & /

Drush size; v«

OK Cancel

Figure 2.23
Cross-hairs make it easy to set a sprite’s rotational center.

Summary

The sprite shown in Figure 2.23 is that of a rock that might be used in a space
shooter game like Asteroids. In this type of game, the asteroid would move
around the screen, threatening to destroy the player’s ship by colliding with it. To
provide a realistic look and feel, you might want to tell Scratch to rotate the rock
as its moves around the screen. By setting up the rock’s rotation point as the
center of the sprite, it will appear to rotate or spin around its center. On the other
hand, by settings its rotation point to be one of the edges of the rock, you can
make it rotate in a more wobbly manner.

Summary

This chapter has introduced you to the Scratch IDE and provided a step-by-step
overview of all of its major components and functionality. You learned how to
work with its menu and toolbar buttons. You learned how to add and delete
sprites as well as how to add scripts, costumes, and sounds to sprites. This chapter
explained the coordinates system used to control the placement of sprites on the
stage. On top of all this, this chapter also provided an overview of Scratch’s Paint
Editor program and outlined all of its major features and functionality.

51

This page intentionally left blank

CHAPTER 3 .

A REVIEW OF THE BASIC
COMPONENTS OF SCRATCH
PROJECTS

As you have already seen, Scratch application projects are comprised of back-
grounds and sprites. Sprites interact and move about the stage under the pro-
grammatic control of scripts made up of code blocks. This chapter will explain
the three basic types of code blocks and how they work together to create scripts.
It will also review the eight categories into which all Scratch’s 100-plus code
blocks are grouped. Although this chapter does not offer an in-depth review of
each individual code block, it will provide a series of tables that you can book-
mark and use as a quick reference when developing new Scratch applications.

An overview of the major topics covered in this chapter includes:

m A detailed explanation of stack blocks, hat blocks, and reporter blocks
m A demonstration of how to work with and configure monitors
m A review of all 100-plus code blocks that make up Scratch scripts

m An explanation of how to display help information for individual code
blocks

Working with Blocks and Stacks

To bring the backgrounds and sprites that make up Scratch applications to life,
you must create scripts. Scripts are created by dragging and dropping code blocks
from the blocks palette to the scripts area and snapping them together, creating

53

54 Chapter 3 = A Review of the Basic Components of Scratch Projects

Spritcl

White Indicator
Bar

Figure 3.1
Use the visual indicator to determine valid connection points.

stacks. Scripts can be run by double-clicking on one of the code blocks. Scripts
can also be configured to automatically execute when predefined events occur.

You can drag a code block around the scripts area. As demonstrated in Figure 3.1,
when you drag a block near other blocks, a white indicator bar appears to designate
locations where a valid connection can be made. Code blocks can be snapped to the
top and bottom of stacks or inserted into the middle of the stack.

You can move code stacks by clicking on their uppermost blocks and dragging
them to a new location. If you drag a block from the middle of a stack, all of the
code blocks underneath it are dragged out as well.

Tip

You can copy a stack of code blocks from one sprite to another by dragging and dropping the
stack onto the thumbnail of a sprite located in the sprite list.

Three Basic Types of Scratch Blocks

Three Basic Types of Scratch Blocks

Scratch applications are made up of sprites that interact with one another and the
user. Sprites are controlled and animated by scripts. Sprites can have any number
of scripts, each of which is designed to perform a specific task or action. Scripts
are made up of one of more Scratch code blocks. In total, there are more than 100
different Scratch blocks, each of which is designed to fulfill a specific purpose.
These blocks can be broadly classified into three categories, as outlined here:

m Stack blocks
m Hat blocks

m Reporter blocks

Working with Stack Blocks

The majority of code blocks provided by Scratch are stack blocks. Stack blocks are
code blocks with a notch at the top or a bump at the bottom. The notches and
bumps serve as visual indicators that identify how the blocks can be snapped
together to create programming logic. Figure 3.2 shows an example of a typical
stack block.

The notch on the top indicates that the code block can be attached to the
underside of another code block. The bump at the bottom of the code block
allows other code blocks to attach to its underside. Figure 3.3 shows an example
of another stack block. This block will repeatedly execute any code blocks that
you choose to embed inside it for as long as a tested condition evaluates as true.

Note

You will learn about the application of repetitive and conditional programming logic in Chapter 9.

stop all sounds

Figure 3.2
An example of a code block that is used to halt the playback of an audio file.

—

Figure 3.3
This code block allows other stack blocks to be embedded within it.

55

56

Chapter 3 = A Review of the Basic Components of Scratch Projects

Some stack blocks include an input area inside them that allows you to specify a
value by typing in a number. For example, the stack block shown in Figure 3.4
lets you assign the color to be used when drawing by inserting a color-associated
numeric value.

To modify the value assigned to a block like the one shown in Figure 3.4, click on

the white area within the code block and type in a new value. Some code blocks

Editable Text
Field

Figure 3.4
This code block is used to specify the color to be used when drawing.

U211 Acoustic Grand

(2 Bright Acoustic

(3) Electric Grand

{4} Honky-Tonlk

(5) Electric Fiano 1

(6) Electric Fiano 2

{73 Harpsichord

(8) Clavinet

(9 Celesta

(10} Glockenspiel

(11 Music Box

(12} wibraphone

(13} Marimba

(1) ¥ylophone

(15) Tubular Bells

(16) Dulcimer

(17 Drawbar Crgan
(18) Percussive Organ
(19) Rock Organ

(20) Church Organ

(21) Reed Organ

(22) Accordion

(23) Harmonica

(24) Tango Accordion
(25) Mylon String Guitar
(26) Steal String Guitar
(27} Electric Jazz Guitar
(28) Electric Clean Guitar
(29) Electric Muted Guitar
(30) Overdriven Guitar
(31) Distortion Guitar
(32) Guitar Harmonics
(33) Acoustic Bass

(343 Electric Bass (finger)
(35) Electric Bass (pick)
(36) Fretless Bass

(37) Slap Bass 1

(38) Slap Bass 2

(39) Synth Bass 1

(40) Synth Bass 2

(410 Wiolin

(421 viola

(433 Cello

(44) Contrabass

(45) Tremolo Strings
(46} Pizzicato Strings
(47) Orchestral Strings
(48) Tirmpani

(49) String Ensernble 1
(50} String Ensernble 2
(51) SynthStrings 1
{52) SynthStrings 2
M.,

Figure 3.5
This code block has a pull-down menu that you can use to configure how it operates.

Three Basic Types of Scratch Blocks

let you configure them by selecting a value from a pull-down list, as demon-
strated in Figure 3.5.

Working with Hat Blocks

A hat block is a code block with a rounded or curved top and a bump at the
bottom, visually indicating that it can be snapped on top of other stack blocks.
Hat blocks provide the ability to create event-driven scripts. An event-driven
script is one that automatically executes when a specified event occurs. An
example of an event that can automatically trigger script execution is when the
user clicks on the green flag button. When this event occurs, any scripts that
begin with the hat block shown in Figure 3.6 are automatically executed.

Script execution can also be triggered when the user clicks on a sprite. This can be
set up by adding the code block shown in Figure 3.7 to the beginning of the script.

Note

Every sprite in an application can potentially have its own scripts. You can automate the execution
of any or all of the scripts using hat blocks. In addition to sprites, the stage can also have scripts.

Working with Reporter Blocks

A third type of Scratch code block is a reporter block. A reporter block is a code
block that has either rounded or angled sides and is specifically designed as a
mechanism for providing input for other code blocks to process. For example,
the code block shown in Figure 3.8 is a typical reporter block.

.

Figure 3.6
This hat block automatically runs a script when the user clicks on the green flag.

P -

Figure 3.7
This hat block runs a script whenever the user clicks on the sprite to which this script belongs.

Figure 3.8
This code block retrieves a numeric value indicating a sprite’s volume.

57

58

Chapter 3 = A Review of the Basic Components of Scratch Projects

set wvolume to LT

Figure 3.9
You can provide input to this code block by either keying it in or using a reporter block.

pressed?

Figure 3.10
Angled report blocks pass Boolean data to other code blocks for processing.

Figure 3.11
This code block pauses script execution until a specified event is true.

Figure 3.12
This particular combination of code blocks will pause script execution until the user presses the spacebar.

As you can see, this reporter block has rounded sides. As such, it can only fit into
code blocks like the one shown in Figure 3.9, whose input area displays a shape
with rounded sides.

Figure 3.10 shows an example of a reporter block that has angled sides. This
particular code block returns a value of true if the user has pressed the spacebar or a
false if the spacebar has not been pressed. Because it has angled sides, it can only be
embedded inside code blocks that contain an input area whose sides are also angled.

Note

Boolean is a term used to represent data that has one of two values, either true or false.

To take advantage of a reporter block like the one shown in Figure 3.10, you need
to embed the reporter block into another code block that has been designed to
work with it. For example, Figure 3.11 shows one such code block.

Figure 3.12 demonstrates how a reporter blocks looks after being embedded
within another code block.

Keeping an Eye Out with Monitors

You have probably noticed that Scratch displays a small check box just to the left
of certain code blocks in the blocks palette, as demonstrated in Figure 3.13.

Keeping an Eye Out with Monitors 59

2l volume
Figure 3.13
An example of a code block capable of displaying a monitor on the stage.

Yolume i 2

Figure 3.14
By default, a monitor displays the name of its associated code block.

Figure 3.15
Monitors can be configured to display a large readout.

'H:ulume |]

Figure 3.16
Variable monitors also support a display format that includes a slider bar.

The presence of a check box indicates that the code block is capable of displaying
a monitor on the stage. A monitoris a small block that displays the value currently
assigned to the code block. To display the monitor, just click on the check box to
select it. When you do so, a gray block is automatically displayed on the stage, as
demonstrated in Figure 3.14.

You can modify the way the monitor looks by right-clicking on it and selecting
Large Readout from the popup menu that appears. As a result, the appearance of
the monitor will change, as demonstrated in Figure 3.15.

Tip

You can also toggle between monitor formats by double-clicking on the monitor.

Variable-based monitors support a third format, which includes a slider bar, as
demonstrated in Figure 3.16. You will learn about variables and their use in
Chapter 7, “Storing and Retrieving Data.”

60

Chapter 3 = A Review of the Basic Components of Scratch Projects

Eight Categories of Scratch Blocks

Scratch provides access to over 100 code blocks. These code blocks are organized
into eight categories and are made available on the blocks palette. Each of these
categories of code blocks is described in the following list:

Motion. Code blocks that control sprite placement, direction, rotation, and
movement.

Looks. Code blocks that affect sprite and background appearance and
provide the ability to display text.

Sound. Code blocks that control the playback and volume of musical notes
and audio files.

Pen. Code blocks that can be used to draw using different colors and pen
sizes.

Control. Code blocks that trigger script execution based on predefined
events, repeatedly execute programming logic using loops, and perform
conditional logic.

Sensing. Code blocks that can be used to determine the location of the
mouse-pointer, its distance from other sprites, and whether a sprite is
touching another sprite.

Numbers. Code blocks that perform logical comparisons, rounding, and
other arithmetic operations.

Variables. Code blocks that can be used to store data used by applications
when they execute.

You can view the code blocks belonging to a given category by clicking on one of
the eight labeled button controls at the top of the blocks palette. Note that each
category of code block is color coded, making it easy to distinguish between code
blocks from different categories.

Each of these categories of code blocks is reviewed in the sections that follow.
This review covers Scratch’s entire collection of code blocks, indicating
which ones support monitors and providing a brief description of each block’s
usage.

Eight Categories of Scratch Blocks

Moving Objects Around the Drawing Canvas

Motion blocks control a sprite’s placement on the stage. Motion blocks are
colored blue. There are motion blocks that let you set the direction a sprite will
move and then other blocks to move them. There are also motions blocks that
report on a sprite’s location and direction. Table 3.1 outlines all of the code
blocks that fit into this category.

Table 3.1 Scratch Motion Blocks

Block Monitor Description

move (0 steps No Moves a sprite forward or backwards a specified number
of steps.

turn (¥ § degreas No Rotates a sprite a specified number of degrees in a
clockwise direction.

No Rotates a sprite a specified number of degrees in a
counterclockwise direction.

No Points a sprite toward a specified direction (0 = up, 90 =
right, —90 = left, 180 = down).

No Points a sprite toward either the mouse-pointer or a
specified sprite.

No Moves a sprite to a specified coordination location on the
stage.

m No Moves a sprite to the location of either the mouse-pointer
or another sprite.

No Moves a sprite to the specified coordinate position over a
specified number of seconds.

No Changes the position of a sprite on the X-axis by a
specified number of pixels.

No Changes a sprite’s location on the X-axis to a specified
value.

change y by §@) No Changes the position of a sprite on the Y-axis by a
specified number of pixels.

No Changes a sprite’s location on the Y-axis to a specified
value.

No Changes a sprite’s direction when it makes contact with
one of the edges of the stage.

m Yes Retrieves a value representing a sprite’s coordinate on the
X-axis (between -240 and 240).

m Yes Retrieves a value representing a sprite’s coordinate on the
Y-axis (between —180 and 180).

Yes Retrieves a value representing a sprite’s current direction
(0 = up, 90 = right, -90 = left, 180 = down).

Chapter 3 = A Review of the Basic Components of Scratch Projects

You will learn more about motion blocks in Chapter 5, “Moving Things
Around.”

Changing Object Appearance

Looks blocks modify sprite and background appearance and display text within
popup bubbles. Looks blocks are colored purple. There are looks blocks that let

Table 3.2 Scratch Looks Blocks

Block Monitor Description
switch to costume costume2 | No Changes a sprite's costume, modifying its
appearance.
No Changes a sprite’s costume to the next costume

in the sprite's costume list, jumping back to the
beginning of the list when the end of the list is

reached.

TR Yes Retrieves a numeric value representing a sprite’s
current costume number.

say [for @ secs No Displays a text message in a speech bubble

for a specified number of seconds.

<oy EEEY No Displays a text message in a speech bubble
or removes the display of a speech
bubble when no text is specified.

think [T for B secs No Displays a text message in a thought bubble
for a specified number of seconds.

think No Displays a text message in a thought bubble
or removes the display of a thought
bubble when no text is specified.

No Modifies a sprite’s appearance by applying and
modifying a special effect (color, fisheye, whirl,
pixelate, mosaic, brightness, or ghost) by a
specified numeric value.

No Applies a special effect (color, fisheye, whirl,
pixelate, mosaic, brightness, or ghost) to a sprite
by a specified numeric value.

No Restores a sprite to its normal appearance,
removing any special effects that may have been

applied.

color | effect by

oor | effact to [

Table 3.2 (Continued)

Eight Categories of Scratch Blocks

Block Monitor Description
change size by No Modifies the size of a sprite by a specified
numeric amount.
set size to EEE) % No Sets a sprite’s size to a percentage of its original

size.

Yes Retrieves a percentage value representing a
sprite’s current size when compared to its
original size.

@ No Tells Scratch to display a sprite.

% No Suppresses the display of a sprite on the stage,
preventing it from interacting with other sprites.

No Places a sprite on top of other sprites, placing it
on the top layer and ensuring its display.

No Moves a sprite back a specified number of layers,
allowing other sprites to be displayed on top of
it.

switch to background backgroundt | No Alters the stage’s appearance by assigning it a
different background.

No Changes the stage’s background to the next
background in the background list.

No Retrieves a numeric value representing the

background number of the stage’s current back-
ground.

you modify sprite costumes and colors. There are also blocks that let you modify
a sprite’s size and control whether a sprite is visible on the stage. Table 3.2
outlines all of the code blocks that fit into this category.

You will learn more about looks blocks in Chapter 10, “Changing the Way

Sprites Look and Behave.”

Making Some Noise

Sound blocks play music and add sound effects to your Scratch application
projects. Sound blocks are colored pink. There are sound blocks that let you play
sounds and drum beats, select different types of instruments, control playback
volume, and modify tempo. Table 3.3 outlines all of the code blocks that fit into

this category.

63

64

Chapter 3 = A Review of the Basic Components of Scratch Projects

Table 3.3 Scratch Sound Blocks

Block Monitor Description

play sound meov | No Plays the specified sound file while allowing the script file
in which it is inserted to keep executing.

play sound meaw | until done No Plays the specified sound file, pausing script execution
until the sound file has finished playing.

No Halts the playback of any sound files currently being
played.

Sl ar Bagte No Plays a drum sound selected from the block’s pull-down
menu a specified number of seconds.

rest for () beats No Pauses sound playback for a specified number of beats.

play note G for @8 beats No Plays a musical note selected from the block’s pull-down
menu a specified number of beats.

ot N Crliant En No Specifies the instrument to be used when playing musical
notes.

St G No Changes a sprite's volume by a specified value.

set volume to EED oo No Sets a sprite’s sound volume to a specified percentage
level.

@ Yes Retrieves a numeric value representing a sprite’s sound
volume.

No Alters a sprite’s tempo by a specified number of beats per
minute.

No Assigns the number of beats per minute to be used as a
sprite’s tempo.

m Yes Retrieves a numeric value representing a sprite’s tempo.

You will learn more about sound blocks in Chapter 11, “Spicing Things Up with
Sounds.”

Drawing Lines and Shapes

Pen blocks draw any combination of shapes and lines using a virtual pen. Pen
blocks are colored mint green. There are pen blocks that let you enable and
disable drawing, set color and pen size, and apply shading. Table 3.4 outlines all
of the code blocks that fit into this category.

You will learn more about pen blocks in Chapter 12, “Drawing Lines and
Shapes.”

Eight Categories of Scratch Blocks

Table 3.4 Scratch Pen Blocks

Block Monitor Description
No Erases or clears away anything drawn by the pen or stamped
from the stage.
SEe AR No Places the pen in a down position, allowing drawing operations
to occur as the pen is moved around the stage.
No Disables drawing operations by lifting the pen.
B s No Specifies the color to be used when drawing.
change pen color by 3 No Changes the color used when drawing by a specified amount.
loat partcaiorito No Specifies the color to be used when drawing based on a numeric

range in which 0 is red (at the low end of the spectrum) and 100
equals blue (at the high end of the spectrum).

R EnnE P et e No Modifies the shading used when drawing by a specified amount.
(eEt pan whads o No Specifies the shade to be used when drawing based on a numeric

range in which 0 is the darkest possible shading and 100
represents the maximum possible amount of light.

EhangE pEaieie by 6D No Modifies the thickness of the pen based on a numeric increment.
sat pen siza to £ No Specifies the thickness or width of the pen used when drawing.

No Draws or stamps the image of a sprite onto the stage.

Looping, Conditional Logic, and Event Programming

Control blocks automate the execution of scripts, pause script execution, and send
messages to other sprites, allowing sprites to synchronize their execution. There are
also control blocks that let you set up loops to repeatedly execute collections of
code blocks as well as control blocks that let you conditionally execute other code
blocks based on whether or not a test condition evaluates as true. Control blocks
are colored gold. Table 3.5 outlines all of the code blocks that fit into this category.

You will learn more about control blocks in Chapter 9.

Sensing Sprite Location and Environmental Input

Sensing blocks determine the location of the mouse-pointer, its distance from
other sprites, and whether a sprite is touching another sprite. Sensing blocks are

65

66

Chapter 3

Table 3.5 Scratch Control Blocks

Block

m A Review of the Basic Components of Scratch Projects

Monitor

Description

No

No

No

No

No

No

No

No

No

No

No

No

No

No

Executes the script to which it has been attached whenever
the IDE’s green flag button is pressed.

Executes the script to which it has been attached whenever
a specified keyboard key is pressed.

Executes the script to which it has been attached whenever
the user clicks on the sprite to which the script belongs.

Pauses script execution for a specified number of seconds,
after which the script resumes its execution.

Repeatedly executes all of the code blocks embedded inside
it.

Repeats the execution of all the code blocks embedded
inside it a specified number of times.

Specifies a broadcast message to all sprites without pausing
script execution.

Sends a broadcast message to all sprites to trigger a
predefined action and then pauses script execution, waiting
until all sprites have completed their assigned action before
allowing the script in which the block resides to continue
executing.

Executes the scripts to which it has been attached when a
specified broadcast message is received.

Repeatedly executes all of the code blocks embedded within
the control for as long as the specified condition evaluates
as true.

Executes all of the code blocks embedded within the control
if the specified condition evaluates as true.

Executes all of the code blocks embedded in the top half of
the control (between the If an Else) if the specified condition
evaluates as true and executes all of the code blocks
embedded in the bottom half of the control (after Else) if
the condition evaluates as being false.

Pauses script execution until a specified condition becomes
true.

Repeats all of the code blocks embedded inside it for as
long as a tested condition evaluates as true.

Eight Categories of Scratch Blocks

Table 3.5 (Continued)

Block Monitor Description

No Halts a script’s execution.

i . No Halts the execution of all scripts for all sprites in the

application.

colored sky blue. There are sensing blocks that can be used to interact with
Scratch boards, allowing applications to detect when the sensor board’s buttons
or slider are being pressed. Table 3.6 outlines all of the code blocks that fit into
this category.

Note

A Scratch board is a special piece of hardware that you can purchase from the Scratch website
and attach to your computer. Once it is attached, you can use a sensor board to collect and
process environment- and user-provided input. You will learn how to programmatically interact
with and control Scratch boards in Chapter 14, “Collecting External Input Using a Scratch Sensor
Board.”

You will learn more about sensing blocks in Chapter 6, “Sensing Sprite Position
and Controlling Environmental Settings.”

Working with Numbers

Numbers blocks perform arithmetic operations, generate random numbers, and
compare numeric values to determine their relationship to one another. Num-
bers blocks are green. There are numbers blocks that can be used to round
numeric values and to execute a host of mathematical functions like determining
absolute value or square root of a number. Table 3.7 outlines all of the code
blocks that fit into this category.

You will learn more about number blocks in Chapter 8, “Doing a Little Math.”

Storing and Retrieving Data

Variables blocks store and retrieve numeric values in computer memory. You will
need to use variables to store data as your application executes. For example,
if you create a game that challenges the player to try and guess a randomly

67

68 Chapter 3 = A Review of the Basic Components of Scratch Projects

Table 3.6 Scratch Sensing Blocks

Block Monitor Description
w No Retrieves the location of the mouse-pointer on the X-axis.
w No Retrieves the location of the mouse-pointer on the Y-axis.
No Retrieves a Boolean value of true or false, depending on
whether a mouse button is pressed.
key space |pressed? No Retrieves a Boolean value of true or false, depending on
whether a specified key is pressed.
No Retrieves a Boolean value of true or false, depending on

whether the sprite is touching a specified sprite, edge, or
mouse-pointer as selected from the block’s pull-down

menu.

oNchingeclar] 2 No Retrieves a Boolean value of true of false, depending on
whether the sprite is touching a specified color.

Salon] [ie touching 2 No Retrieves a Boolean value of true of false, depending on

whether the first specified color inside the sprite is touching
the second specified color on the background or on another

sprite.
distance to | No Retrieves a numeric value representing a sprite’s distance
from another sprite or from the mouse-pointer.
No Resets the timer back to its default value of zero.
Yes Retrieves a numeric value representing the number of
seconds that the timer has run.
No Retrieves the property value (x position, y position,

direction, customer #, and size of volume) for the
background of a specified sprite.

Yes Retrieves a numeric value, from 1 to 100, representing the
volume of the computer’s microphone.

Yes Retrieves a Boolean value of true or false when a sound
value of 30 or greater is detected through the computer’s
microphone.

Hlidar Pomm e Yes Retrieves the value being reported by one of the sensors on
a Scratch board.
Yes Retrieves a Boolean value of true or false, depending on

whether a specified sensor is being pressed.

generated number, you will need to use a variable to store and refer back to this
number.

Variables can be used in conjunction with conditional programming logic to
control the execution of other code blocks. Variables can also be used to control

Eight Categories of Scratch Blocks

Table 3.7 Scratch Numbers Blocks

Block Monitor Description

No Adds two numbers together and generates a result.

No Subtracts one number from another and returns the result.

No Multiplies two numbers together and generates a result.

No Divides one number into another and returns the result.

No Generates a random number within the specified range.

No Returns a Boolean value of true or false, depending on
whether one number is less than another.

No Returns a Boolean value of true or false, depending on
whether one number is equal to another.

No Returns a Boolean value of true or false, depending on
whether one number is greater than another.

No Returns a Boolean value of true or false, depending on
whether two separately evaluated conditions are both
true.

No Returns a Boolean value of true or false, depending on
whether either of two separately evaluated conditions is
true.

‘not . No Reverses the Boolean value from true to false or false to
true.

No Retrieves the remainder portion of a division operation
between two numbers.

No Returns the nearest integer value for a specified number.

No Returns the result of the selected function (abs, sqrt, sin,

cos, tan, asin, acos, atan, Ln, log, E~, and 10/) when
applied to the specified number.

the repeated execution of code blocks embedded within code block loops.
Variables blocks are colored orange. You can create and name custom variables
blocks and assign them a starting value. You can also modify their values during
script execution. Other code blocks can retrieve variable values and use them as
input. Table 3.8 outlines all of the code blocks that fit into this category.

You will learn more about variables blocks in Chapter 7.

70 Chapter 3 = A Review of the Basic Components of Scratch Projects

Table 3.8 Scratch Variables Blocks

Block Monitor Description

No Modifies the value assigned to a numeric value stored in a
variable by the specified amount.

et PlayerScore to @ No Assigns a value to a numeric variable.

Yes Retrieves the value assigned to a variable.

Getting Help with Code Blocks

In addition to bookmarking and referring back to the tables provided in this
chapter to find out what a given code block does, you can view help information
for any Scratch code block by right-clicking on the code block in the blocks
palette, as demonstrated in Figure 3.17.

Alternatively, you can right-click on a code block once it has been added to the
scripts area to access a link to the block’s help file, as demonstrated in Figure 3.18.

By clicking on the Help link in the popup menu that is displayed, you can display
help information for that control. For example, Figure 3.19 shows the help
information that is available for the forever code block.

As Figure 3.19 shows, the help information that is displayed explains the purpose
of the code block and demonstrates its usage.

pressad?

Figure 3.17
Accessing help for a given Scratch code block.

mouse down?

help
duplicate
delete

Figure 3.18
Accessing help for a Scratch code block that has been added to the scripts area.

Summary 71

keep doing this torever

Figure 3.19
Displaying the help window for the forever code block.

Summary

This chapter provided a quick reference that outlined the purpose and usage of
all of the code blocks provided by Scratch. You may want to bookmark this
chapter to help make it easy to return to and take advantage of this information.
This chapter explained the three types of code blocks supported by Scratch and
outlined their relationship to one another. The chapter then provided an
explanation of all 100 plus Scratch code blocks, going over them category by
category. On top of all this, you learned how to work with and configure
monitors and to access help information for individual code blocks.

This page intentionally left blank

CHAPTER 4 .

MR. WiGGLY’Ss DANCE—A
Quick ScrRATcH PRrRoOJECT

So far, you have been presented with an overview of Scratch and its capabilities
and learned how to work with its IDE. You have also been given an overview of all
of the code blocks that make up the Scratch programming language and learned
the basic steps involved in creating Scratch applications. Now that you are more
familiar with Scratch and its key components, let’s put this new knowledge to use
by creating a new Scratch application project, examining in greater detail the
steps involved in creating and executing Scratch applications.

The topics covered in this chapter include:
m A review of the programming concepts that Scratch can teach you

m A detailed overview of how to build Scratch applications

m Learning how to distribute your Scratch programs on CD-ROM

Programming with Scratch

As a beginner’s programming language, Scratch teaches you a number of
critical programming concepts that you will be able to later rely on should you
decide to make the jump to other more traditional and industrial-strength
programming languages like Microsoft Visual Basic, C++-, JavaScript, and

73

74 Chapter 4 = Mr. Wiggly’s Dance—A Quick Scratch Project

AppleScript. The programming concepts that you can learn from Scratch
include:

Sequential Processing. This involves the processing of application code
blocks, in the order that they are laid out, starting at the beginning of a script
file and continuing to the end of the script.

Conditional Programming Logic. This involves the conditional execution
of code blocks based on data collected during application execution.

Use of Variables. This involves the storage, retrieval, and modification of
data during application execution.

Iterative Processing. This involves the repeated execution of code blocks to
process large amounts of information or to control the repeated execution
of code blocks required to direct the execution of a game or application.

Boolean Logic. This involves the application of programming logic that
executes based on the analysis of true/false data provided by Scratch during
program execution.

Interface Design. This involves the development of user-friendly and
intuitive application stage layout, making it easy for users to interact with
applications.

Program Synchronization. This involves the passage and receipt of
messages between application scripts for the purpose of coordinating the
execution of different parts of an application.

Event Handling. This involves the initiation of script execution based on the
occurrence of predefined events, such as the pressing of keyboard keys, the
pressing of the green flag key, or the receipt of a synchronization message.

Application and Game Development. This involves the creation of
different types of computer application projects.

Sprite Programming. This involves the use of sprites as the basis for
developing graphical programs.

Application Troubleshooting. This involves the identification, location,
and elimination of programming errors, or bugs, that prevent applications
from executing as they are supposed to.

Creating the Mr. Wiggly's Dance Application

You will learn more about each of these programming concepts as you make
your way through the remainder of this book.

Note

As powerful and fun as Scratch is, there are some programming concepts that it does not teach.
These concepts include the storage of collections of data in arrays, the ability to process file input
and output, the ability to organize application code into procedures, and the ability to support
advanced object-oriented programming techniques. However, as a first-time programmer, these
concepts can be challenging to learn, and by omitting them, the developers of Scratch have
produced a streamlined yet powerful learning environment, which will prepare you to later make the
jump to programming languages that support these advanced programming concepts.

Creating the Mr. Wiggly’s Dance Application

The rest of this chapter is dedicated to leading you through the development of
the Mr. Wiggly’s Dance application. In this Scratch application, a short, round,
and comical cartoonish character named Mr. Wiggly dances around the stage to
music, as demonstrated in Figure 4.1.

Because Mr. Wiggly is bashful, his skin changes color as he dances, as demon-
strated in Figure 4.2. Although not immediately obvious when viewed in black
and white, if you compare the color of Mr. Wiggly in Figures 4.1 and 4.2, you will
notice that he has definitely begun to blush, betraying his discomfort at dancing
in front of an audience.

Figure 4.1
Mr. Wiggly practices his dance moves, dancing back and forth across the stage.

75

76

Chapter 4 = Mr. Wiggly’s Dance—A Quick Scratch Project

Figure 4.2
The bashful Mr. Wiggly's skin color changes as he dances.

Figure 4.3
Mr. Wiggly pauses at the end of each dance only to decide to keep dancing.

At the end of each dance, Mr. Wiggly pauses for a moment to reflect on how things
are going before deciding to keep on dancing, as demonstrated in Figure 4.3.

The Mr. Wiggly’s Dance application project will be created by following a series
of steps, as outlined here:

1. Creating a new Scratch application project.

2. Adding a project background.

Creating the Mr. Wiggly's Dance Application

3. Adding and removing sprites to and from the project.

4. Importing a music file into the application.

5. Scripting audio playback.

6. Adding the programming logic required to make Mr. Wiggly dance.
7. Saving and executing your work.

Since this book has yet to provide a detailed explanation of how to work with all
of the Scratch code blocks used in this application project, brief explanations will
be provided. You will learn the ins and out of programming with code blocks in
Chapters 5 through 12. As you make your way through each of the steps in this
project, try and keep your focus on the overall process being followed and do not
get caught up in the specifics. Later, once you have finished reviewing Chapters 5
through 12, you can always return and review this project again and clear up any
questions you may have.

Step 1: Creating a New Scratch Project

The first step in creating a Scratch project is to start Scratch. Doing so results in
the automatic creation of a new Scratch project. New Scratch projects come
equipped with a single sprite with two costumes representing a cat. You can
choose to incorporate this sprite into your application or to remove it. If, on the
other hand, Scratch has already been started and you have been working with it
for a while, you can create and open a new Scratch application project by clicking
on the New button located on the Scratch menu bar. In response, a new project is
opened in the IDE, as shown in Figure 4.4.

Step 2: Adding a Background to the Stage

With your new Scratch application project now created, it is time to get to work.
Let’s begin by adding a suitable background to the stage that will help set the
mood of the application. Backgrounds are associated with the stage, so to add a
background to your application, you must click on the blank stage thumbnail
located in the sprite list. Once selected, the stage thumbnail is highlighted with a
blue outline, as shown in Figure 4.5.

Once you have selected the stage thumbnail, you can modify its background by
clicking on the Backgrounds tab located at the top of the scripts area. When you do
so, the currently assigned stage background is displayed, as shown in Figure 4.6.

77

78

Chapter 4 = Mr. Wiggly’s Dance—A Quick Scratch Project

Em[sharal | l undo]l L:nguag.‘l.[. Extras][Want Halp?]
contro ol o (v)

Sensing

Muileers

varizblas

move @i steps
turn (& B degrees

turn %) 63 degrees

penint in direction

point towards

g0 to = @ v @
go to

uliche @ ses Lo x: @ v: @

changa x by @D
cat » to @
changa y by (&)

sat y to @
it on edge, bounce
[l x postion

B v pusition
[dwrection

Figure 4.4
New Scratch application projects come supplied with a single sprite.

b
2
tel

2 costumes

Figure 4.5
Selected thumbnails in the sprite list are highlighted with a blue outline.

To replace the currently assigned blank background with something more
interesting, click on the Import button. This will open the Import Background
window. Once opened, click on the Indoors folder, select the chalkboard
thumbnail, as shown in Figure 4.7, and click on the OK button.

Creating the Mr. Wiggly's Dance Application 79

Mew background: m m

backgroundl

Ceaie | copy

Figure 4.6
The Backgrounds tab provides the ability to create, import, edit, and rename backgrounds.

Import Background

e o B0 |

Backgrounds

O
Desktop
e

(|

Mincomnents

Figure 4.7
Importing a new background into your Scratch application project.

Once imported, the new background will be added to the application’s current
list of background files, as shown in Figure 4.8. As you can see, the thumbnail is
automatically assigned a name and a number.

Since this application only requires one background, you can remove the default
blank background named backgroundl from your project by clicking on the
Delete This Costume button, which is located to the right of the background’s
picture and represented by a round X button.

80

Chapter 4 = Mr. Wiggly’s Dance—A Quick Scratch Project

nNew background: m

- backgroundl
Edit }| Copy |

1

— chalkboard

Figure 4.8
Scratch applications can have any number of backgrounds and can switch between them during
execution.

Choose New Sprite
from File button

412283

Figure 4.9
Click on the Choose New Sprite from File button to access a collection of ready-made sprites.

Tip

Removing backgrounds, costumes, and sound files no longer needed by your Scratch applications
will reduce their size. This can be of critical importance should you decide to upload them to the
Scratch website. There is a 10MB project size limit at that site. Graphic and audio files tend to be
relatively large, so removing any that you do not need can have a significant impact on the size of
your applications.

Step 3: Adding and Removing Sprites

The next step in the development of this Scratch project is to add a sprite
representing Mr. Wiggly to the project and to remove the cat sprite, which is not
needed in this application. To add the sprite representing Mr. Wiggly, click on
the Choose New Sprite from File button, as shown in Figure 4.9. This button is
the middle button that makes up the collection of new sprite buttons, located just
beneath the stage and just above the sprite list.

Scratch provides ready access to all kinds of sprites, organized into the following
six folders:

Creating the Mr. Wiggly's Dance Application

m Animals

Fantasy

m Letters

People
m Things
m Transportation

The sprite that you want to use to represent Mr. Wiggly is located in the People
folder. Once clicked, the Choose New Sprite from File button instructs Scratch to
display the New Sprite window, which provides access to the six folders listed
above. Open the People folder and then scroll down until you locate the
roundman sprite, as shown in Figure 4.10.

Select the roundman sprite by clicking on it and then click on the OK button. The
New Sprite window will close and the new sprite will be added to the middle of
the stage, as shown in Figure 4.11.

New Sprite
(People J ') é} [*4
& 8
Costumes
8 ; :
Diesktop paull princel princez princess1
O]
Docurnents d u
1
1 i
O i i : :
Splesle” referesl referes2 ribbon-dancer roundrman
0 o
Pictures o F“
i ! o k ol - B
" et
. e
royalperson sarm singerl squaredgirl
0K J Cancel
|
Figure 4.10

Selecting the sprite that will be used to represent Mr Wiggly.

81

Chapter 4 = Mr. Wiggly’s Dance—A Quick Scratch Project

e

Figure 4.11
A thumbnail representing the sprite is also added to the sprite list.

When contrasted against the stage’s background, Mr. Wiggly’s default placement
in the middle of the stage makes it look like he is floating on air. To put things
into proper perspective, drag and drop Mr. Wiggly about one inch lower down
the stage, so that it looks like he is standing on the floor.

Since the Mr. Wiggly’s Dance application does not need the default cat sprite, go
ahead and remove this sprite from the application project by selecting the Delete
button on the Scratch toolbar and then clicking on the thumbnail for the cat
located in the sprite list.

Tip

You can also remove the cat sprite from the application by right-clicking on its thumbnail and then
selecting Delete from the popup menu that is displayed.

Step 4: Adding Mr. Wiggly’s Music

Now that you have taken care of the sprites needed by the application, it is time to
import the sound file. To do this, click on the thumbnail representing the stage in
the sprite list and then click on the Sounds tab in the scripts area. In response,
Scratch will display all of the sound files belonging to the sprite. By default, every

Creating the Mr. Wiggly's Dance Application

New sound: m

Figure 4.12
All sprites supplied by Scratch come equipped with the same sound file.

sprite in a Scratch application is assigned a common sound file named pop, as
shown in Figure 4.12.

Scratch provides ready access to all kinds of prerecorded audio files. The name of
the sound file that Mr. Wiggly will dance to is Eggs. To add this file to the sprite,
click on the Import button. In response, Scratch will display the Import Sound
window, which by default contains eight folders, listed next, in which Scratch
stores its audio files.

= Animal

m Effects

m Electronic

= Human

= Instruments
m Music Loops
m Percussion

m Vocals

Drill down into the Music Loops folder by double-clicking on it. Locate and click
on the Eggs file, as shown in Figure 4.13. Scratch will immediately play the file, so
you can hear what it sounds like.

Click on the OK button to import the sound file into your application project, as
demonstrated in Figure 4.14. Note that for each sound file, a number of pieces of
information are displayed. You can see the name of the file, the length of time
that it takes to play the file, and the file’s size. Note that the Eggs sound file takes

83

84

Chapter4 =

— _ h
Import Sound

Mr. Wiggly’s Dance—A Quick Scratch Project

(_Music Loops '9 .ﬁ D] ‘
@'] cave —
= SRS - (] DripDrop
T {1 Drum .
Desktop (] DrurnMachine E
=4] DrumSeti
=] Drumzetz
Diocurmnents m
| (] Garden
Corrputer '] GuitarChords1
(7] GuitarChordsz
in] HipHop
Music:
] HurnarBeatboxl
] HurnarBeatbox2
ok Cancel
_—
Figure 4.13

Importing a sound file into a Scratch application project.

New sound: (import]

Figure 4.14
You can add any number of sound files to a sprite.

16 second to play. You will need to remember this information a little later when
programming the playback of this sound file.

The default pop sound file is not needed by this application; therefore, you can
delete it by clicking on the round Delete This Sound button located at the
bottom-right side of the sound file entry.

Creating the Mr. Wiggly's Dance Application

Step 5: Playing the Dance Music

It is time to begin putting together the program code logic required to make your
new application work. In total you will need to create two scripts for this project:
one for the stage and another for the sprite representing Mr. Wiggly. The script
belonging to the stage will be made up of code blocks that are responsible for
playing the application’s background music. The script belonging to the sprite
will contain the programming logic required to make Mr. Wiggly dance.

The first step in the development of the stage’s script is to click on the Control
button in the blocks palette and then to drag and drop an instance of the when
green flag clicked block onto the scripts area, as demonstrated in Figure 4.15.
This hat code block will automatically execute the script to which it is attached
whenever the green flag button is clicked.

Since the application’s background music is supposed to be played over and over
again for as long as the application runs, you need to set up a loop that will
repeatedly play the sound file. To set this up, drag and drop an instance of the
forever code block to the scripts area, attaching it to the bottom of the when
green flag c1icked block, as shown in Figure 4.16.

Now that you have the loop set up, click on the Sound button located at the top
of the blocks palette and then drag and drop an instance of the play sound code
block onto the scripts area, embedding it inside the forever code block. Next,
click on the pull-down menu located on the right-hand side of the code block
and select Eggs from the list that appears. At this point the script that you are
developing should look like the example shown in Figure 4.17.

Note

Scratch automatically populates the play sound code block with a list of all of the sound files
that you added previously to the stage, making it easy for you to access them when working with
sound code blocks.

At this point you only need to add one last code block to the script to finish it up.
To do so, click on the Control button located at the top of the blocks palette and
then drag and drop an instance of the wait secs code block over the scripts area,
inserting it inside the forever code block, immediately following the play sound
block, as shown in Figure 4.18. This block is needed to pause the loop for
16 seconds, allowing for the complete playback of the sound file, before the loop
repeats and begins playing it again.

85

86 Chapter 4 = Mr. Wiggly’s Dance—A Quick Scratch Project

Motion Control
Looks Sensing
Sound Numbers

¥Yariables

[l-'whe_ri -Si!:a_ﬁe I:ll;:l;!::l_

| wait ':'_sgcs

Tepest (D

lEF&adc@;—f (4]

r.l-:lr'_aa"dl:his't-. _|.and wrait

Figure 4.15
This block will be used to automatically execute the script whenever the green flag button is clicked.

Figure 4.16
The forever block will repeat the execution of any code block that you embed within it.

Creating the Mr. Wiggly's Dance Application 87

Figure 4.17
Using the play sound code block to play back the Eggs sound file.

play sound Eaggs

Figure 4.18
Pausing loop execution to allow playback of the sound file to complete.

Note

Now that this script has been written, you can test it out by double-clicking on it. In response,
Scratch will repeatedly play back the sound file. Once you are convinced that everything is
working correctly, click on the red Stop Everything button to halt the script’s execution so that you
can move on to the next step in the development of this application.

Note

In addition to playing an audio file using the combination of the sound and control blocks shown
in Figure 4.18, you can instead use the code block shown here, which does the same thing as
these two code blocks.

play sound Egas | until done

Step 6: Making Mr. Wiggly Dance

Now that you have finished work on the stage’s script, it is time to write the script
that makes Mr. Wiggly dance. To do so, click on the thumbnail of the sprite
representing Mr. Wiggly (in the sprite area). In response, Scratch should clear
out the script’s area and automatically select the Scripts tab for you so that you
can begin script development.

Chapter 4 = Mr. Wiggly’s Dance—A Quick Scratch Project

The first step in the development of this is to click on the Control button in the
blocks palette and then to drag and drop an instance of the when green flag
clicked block onto the scripts area, as demonstrated in Figure 4.19. This hat code
block will automatically execute the script to which it is attached whenever the
green flag button is clicked.

In this application, Mr. Wiggly is supposed to dance over and over again without
stopping (until the user stops running the application). To set this up, drag and
drop an instance of the forever code block onto the scripts area and attach it to
the bottom of the when green flag c1icked block, as shown in Figure 4.20.

Next, it is time to add a pair of code statements that will move Mr. Wiggly 25
steps to the right and then pause for two seconds. This is accomplished by
dragging and dropping the move steps and wait secs blocks to the scripts area,
embedding them inside the forever code block, as shown in Figure 4.21. Note

Figure 4.19
Setting up the script to execute when the green flag is clicked.

Figure 4.20
Adding a loop to the script to repeat the execution of embedded code blocks.

move steps

Figure 4.21
Adding the programming logic that makes Mr. Wiggly dance his first step.

Creating the Mr. Wiggly's Dance Application

move steps
(it @ sece
mowe steps

move) steps

(wait @ secs

move) steps
move

(wait
move

Ll

Figure 4.22
Adding the remaining code blocks required to complete Mr. Wiggly's dance routine.

that by default the move steps block is set to 10. You will need to replace this with
a value of 25.

Next, you need to add a series of move steps and wait secs code blocks, which,
when executed, will move Mr. Wiggly 25 steps to the right followed by four
moves to the left at 25 steps each and then another two moves back towards the
right. This is accomplished by adding seven sets of a code block, as shown in
Figure 4.22.

To complete the development of this script, you need to add two looks blocks, as
shown in Figure 4.23. The change effect by code block is used to modify
Mr. Wiggly’s color each time the loop finishes its execution, simulating the
feeling of embarrassment that Mr. Wiggly experiences when he dances. Lastly,
the think for secs code block is used to display a text message in a popup bubble
that shows Mr. Wiggly thinking about and then deciding to keep dancing.

89

90

Chapter 4 = Mr. Wiggly’s Dance—A Quick Scratch Project

move [steps

mowve @) steps

il effect by

think CEENEITITELT] for @ secs

Figure 4.23
Modifying Mr. Wiggly's color and displaying his thoughts.

Step 7: Saving and Executing Your
New Scratch Application

At this point your copy of the Mr. Wiggly’s Dance application should be com-
plete. All that remains is for you to save the application and then to execute it and
see how it looks when running. To save your application, click on the Save button
located on the IDE’s menu bar. In response, Scratch will display the Save Project
window, as demonstrated in Figure 4.24, prompting you to specify the name and
location where you want to store your new application.

In addition, Scratch provides the opportunity to enter your name as the project
author and to enter notes describing the project in the Project Author and About
This Project text fields. Once you are done, click on the OK button to save your
Scratch application project.

Once you have saved your work, run the application to see how it works. Since
both of the application’s scripts are configured to execute whenever the green flag
button is pressed, all you have to do is click on that button and sit back and watch
as the bashful Mr. Wiggly dances about the stage for your amusement.

Distributing Scratch Projects

(Deslitop ') 5} B
s
Prujecls ") Mr. Wingly's Dance
= "] Basksthall Quiz
Uesktap (1t Project author:
[ramily Ficture Movie (L .
]] Family Scraphaok
Docurnents 1 Fish Tank: About this project:
o 1 Muvie This Scratch application projects
. : dermnonstrates how to rmmove a sprite, change
Camputer LI M. Wigghy's Dance PR R SRS R D
1 MumberGuess stage and play music,
[l Robot Stary
[] ScratchPong
] THE COLOUR CAT
MNew Filename: .Mr. Wiggly's Dance oK Cancel
>
Figure 4.24

Saving your copy of the Mr. Wiggly's Dance application project.

Distributing Scratch Projects

Scratch is an interpreted programming language. This means that unlike some
programming languages, such as Visual Basic and C++, which compile their
applications into an executable file that can then be run on other computers
without requiring that the programming language be installed, Scratch appli-
cations can only execute when run within the Scratch IDE (or on the Scratch
website at http://scratch.mit.edu). Therefore, if you want to distribute your
Scratch applications and have them execute on someone else’s computer, you
must first see to it that Scratch is installed on the other computer, or you must
create a special application distribution CD that includes Scratch system files
required to run your application when Scratch has not been installed.

Note

You can also share access to your Scratch application projects by posting them on the Scratch
website and pointing your friends to that website, where they can view and run them using a
Java-enabled web browser. You will learn all about the steps involved in sharing your Scratch
applications this way in Chapter 13, “Sharing Your Scratch Projects Over the Internet.”

91

http://scratch.mit.edu

92

Chapter 4 = Mr. Wiggly’s Dance—A Quick Scratch Project

7

==
mv! ..« HP(C) » Program Filez » Scratch » - | +y | | Scarch 2
: File Edit View Tools Help
‘ Organize ws + \@ Bun [Compatibility Files
Favorte Finlks Name . Date modified Type Size Tags
E . Help 1/28/2008 9:09 PM File Folder
| Documents
e | locale 1/28/2008 9:09 PM File Folder
B Msic Media 11/25/200712:39 ... File Folder
4 Recently Changed |. Projects 1/28/20089:09 PM File Folder
BB searches [.DS Store 12/6/2007 1012 PM DS_STORE File 13 KB
I/ Public =i license 5/7/2007 2:38 AM Text Document 2KB
% Mpeg3Plugin.dll 10/14/2006 211 AM Application Extension 239 KB
& Scratch 3/15/2007 817 PM Application 1,080 KB
|| Scratch.image 12/6/2007 9:47 PM IMAGE File 5,576 KB
4| Suraleh 2/24/2008 G:46 PM Configuralivn Sellings 1KB
%, ScratchPlugin.dil 11/7/2007 11:37 PM Application Extension 76 KB
7 uninstal 2/24/2008 6:45 PM Application 64 KB
Folders Lol | i || 1] t

Figure 4.25
Burn a copy of the files shown in this figure along with your Scratch application file to create a
distributable Windows CD-ROM.

Distributing Scratch Applications to Windows Computers

The files that you need to burn to your distribution CD-ROM vary, depending on
whether you are working with Microsoft Windows or Mac OS X. When working
with Microsoft Windows, you will need to burn the following files identified in
Figure 4.25, as well as a copy of your Scratch application, to a CD-ROM.

Each of the files listed can be found in the folder in which you installed Scratch,
which on Microsoft Windows is C:\Program Files\Scratch by default.

m Scratch.exe
m Scratch.image
m Scratch.ini

ScratchPlugin.dll

Mpeg3Plugin.dll
m License.txt

Note

The reason for including the License.txt file, which is Scratch’s license document, is to ensure that
anyone you distribute your CD-ROM to will know the terms of the license agreement. Including
this file will also keep you out of legal trouble.

Distributing Scratch Projects

Distributing Scratch Applications to Mac OS X Computers

If you are working with Mac OS X and want to create a distribution disc to share
your creations with other Mac users who do not have Scratch installed on their
computers, you may do so by burning a CD-ROM containing your Scratch
application projects as well as the following Scratch system files, all of which are
available in Scratch’s installation folder.

m Scratch.app
m Scratch.image

m License.txt

Instructions for Executing Your Application
from a CD-ROM

Once you have burned a CD-ROM for your Scratch application, you need to tell
your friends how to execute it, which can be done by double-clicking on
Screatch.exe (Windows) or Scratch.app (Mac OS X), which will start the Scratch
IDE, after which your application can be accessed by clicking on the IDE’s Open
button.

Alternatively, for Windows users, you might want to consider adding a batch file
for each application that you added to the CD-ROM that when executed will run
one of your Scratch applications. You can do this by opening your preferred text
editor (such as Notepad) and keying in a single statement using the following
syntax.

Scratch.exe Scratch.image ScratchProject.sb

Here, Scratch.exe is the name of the Scratch executable that starts Scratch.
Scratch.image is a required Scratch system file, and ScratchProject.sb represents
the name of a Scratch application that you have added to the CD-ROM. Note
that the .sb file extension has been included. Once you have typed in this
statement, save the text file with a filename that ends with a .bat file extension
(MrWiggly.bat, HelloWorld.bat, etc.).

When a batch file is added to the CD-ROM along with all of the files already
listed, your friends can start your Scratch application by double-clicking on it.
Once double-clicked, the batch file will open Scratch and load your Scratch
application project into it, making it ready for execution.

93

94

Chapter 4 = Mr. Wiggly’s Dance—A Quick Scratch Project

Summary

This chapter walked you through the development of your second Scratch
project. In learning how to create Mr. Wiggly’s Dance, you learned the funda-
mental steps involved in creating and executing Scratch applications. This
included learning how to change stage backgrounds and work with sprites.
Although detailed instruction on how to work with different code blocks and
sounds is not covered until later chapters, you received a quick overview of how
to work with a number of control, motion, looks, and sound blocks, and you
learned how to import audio files and sprites into your Scratch applications.

PART |

LEARNING How 1O WRITE
ScrRATCH PROGRAMS

This page intentionally left blank

CHAPTER 5 -

MovVING THINGS AROUND

This chapter is the first of eight chapters designed to teach you how to work with
all of the code blocks that make up the Scratch programming language. This
chapter’s focus is on demonstrating how to work with motion code blocks. Using
these blocks, you will be able to create Scratch applications that can move sprites
around the stage, rotate sprites, point them in different directions, change sprite
location, detect collisions with the edge of the stage, and report on a sprite’s
direction and coordinates. This chapter also introduces you to Scratch cards as a
means for learning how to perform different types of tasks. You will also learn
how to create a new virtual fish tank application.

The major topics covered in this chapter include:

m Learning how to move and rotate sprites
m Learning how to change sprite direction and location

m Learning how to change sprite location and to detect collisions with the edge
of the stage

m Learning how to retrieve and report information about a sprite’s coordinates
and direction

97

98

Chapter 5 = Moving Things Around

Working with Motion Code Blocks

To move sprites around the stage when your Scratch applications execute, you
need to learn how to work with motion code blocks. As previously stated, motion
blocks control sprite placement, direction, rotation, and movement. In total,
Scratch provides access to 16 different motion blocks, which you can work with
by clicking on the Motion button located at the top of the blocks palette and then
dragging and dropping motion blocks onto the scripts area, where you can
configure them and use them in creating scripts.

If you look closely at the various motion code blocks, you will notice that Scratch
organizes them into six subgroupings, each of which is separated by a blank space
in the blocks palette. These sub groupings include:

= Motion blocks that move and rotate sprites

m Motion blocks that point sprites in different directions or towards different
objects

m Motion blocks that change a sprite’s location and control whether a sprite
jumps to its new location or glides to it

m Motion blocks that change a sprite location by setting or modifying the
value of its X-axis and Y-axis coordinates

= A motion block that controls a sprite’s movement when it touches the edges
of the stage

= Motion blocks that report on a sprite’s position and direction

Examples of how to work with the motion code blocks in each of these subgroups
are provided throughout the rest of this chapter.

Moving and Rotating Sprites

Scratch provides access to three motion blocks that move sprites and rotate them
on their axis. These code blocks are shown in Figure 5.1.

The first of these blocks allows you to specify the number of steps that a sprite
should be moved on the stage (in whatever direction the sprite is currently
pointing). By default, the code block specifies a value of 10. However, you may

Moving and Rotating Sprites

mowe steps

turn degrees

turn b degrees

Figure 5.1
These control blocks are designed to give you control over the relative movement and rotation of

sprites.

change this value to suit your needs. You can even enter a negative value to move
the sprite in the opposite direction that it is pointing.

In addition, you can drag and drop any reporter block you want into this code
block’s entry field when specifying a value. The next two code blocks provide the
ability to rotate a sprite on its axis, clockwise and counterclockwise, as indicated
by the direction of the arrow displayed on the blocks.

The following sample script demonstrates how to use the first two blocks to move
a sprite around the stage in a clockwise manner.

move steps
turn G

move O} steps
turn G E) degrees
W BCs

move steps
turn G El) degrees

This script executes whenever the green flag button is clicked. Once this event has
occurred, four pairs of motion code blocks are executed at one-second intervals.
This application uses the default cat sprite that is supplied as part of every new
Scratch project. To create and test your own copy of the application, create a new
Scratch application, click on the thumbnail of the cat sprite, drag it to the upper-
left corner of the stage, and shrink it to about 50% of its normal size and then
assemble the script.

99

100

Chapter 5 = Moving Things Around

The first two motion blocks in the script move the sprite 400 steps. Since the cat,
by default, is pointed 90 degrees to the left, this will move the sprite from the
upper-left corner of the stage to the upper-right corner of the stage. The next pair
of motion blocks moves the sprite down to the bottom-right corner of the stage.
The third pair of motion blocks moves the sprite to the bottom-left corner of the
stage, and the last pair of motion blocks moves it back to the upper-left corner of
the stage.

Note

All of the sprites supplied by Scratch have a predefined rotation axis. You can change the rotation
axis for these sprites and set the rotation point for new sprites that you create or import into
Scratch by editing the sprite using Scratch’s Paint Editor program and then specifying a new
rotation axis using the program’'s Set Rotation Point control.

A sprite’s rotation is also affected by the selection of one of the three rotation buttons located on
the left-hand side of the Sprite’s info area. If you look at the cat sprite’s rotation setting, you will
see that the cat sprite is configured by default to rotate freely.

Figure 5.2 demonstrates the movements of the cat sprite as it moves from corner
to corner, clockwise around the screen.

W

o ety
= 0

& %

Figure 5.2
The cat's direction is changed by 90 degrees immediately after each move, readying it for its next move.

Setting Sprite Direction 101

If you want, you can modify the script to move the sprite around the stage in a
counterclockwise direction by modifying it, as demonstrated here:

move) steps
turn .t) ERD degrees
3 cs

move staps
turn ‘t) ED degrees

Setting Sprite Direction

Scratch provides access to two motion blocks that can be used to point a sprite in
a specified direction or to point a sprite towards the mouse-pointer or a specified
sprite. These code blocks are shown in Figure 5.3.

The first of these blocks allows you to point a sprite in a particular direction as
specified by the assignment of a numeric value representing the number of
degrees that the sprite should be turned. You can either select a value of 0 = up,
90 =right, —90 =Teft, or 180 = down from the block’s drop-down list or type in an
integer value in the range of 0 to 360. For example, the following script demon-
strates how to rotate a sprite 360 degrees, 90 degrees at a time at one-second
intervals.

point in direction EIRS

point in direction

action

point in direction EIES

&

102

Chapter 5 = Moving Things Around

point in direction ERES

point towards

Figure 5.3
These code blocks can be used to point a sprite towards a specified direction or object.

Figure 5.4
An example of the four possible directions that the point in direction code block can point a sprite.

h

Figure 5.5
The cat rotates as necessary to continue facing the mouse-pointer.

This example uses the default cat sprite. Figure 5.4 shows an example of the four
directions that the sprite turns when the script is executed. Note that for this
example to work, you must click on the Can Rotate button in the sprite info area
(allowing the sprite to rotate over a range of 360 degrees).

The second motion block shown in Figure 5.5 lets you point a sprite towards either
the mouse-pointer or another sprite, as demonstrated in the following script.

Repositioning a Sprite
In this example, the sprite is continuously repositioned so that is points towards
the mouse-pointer. Therefore, whenever the mouse-pointer is moved around the

stage, the image of the cat follows, as demonstrated in Figure 5.5.

Note

In order for the sprite shown in Figure 5.5 to continuously reposition itself, the motion block must
be embedded within a control block that sets up a loop, repeatedly executing the motion block,
allowing it to react every time the mouse-pointer is moved.

Repositioning a Sprite

Scratch provides access to three motion blocks that move a sprite to a specified
coordination location on the stage, move a sprite to the location currently
occupied by the mouse-pointer or another sprite, or move a sprite to a specified
coordination position over a specified number of seconds. These code blocks are
shown in Figure 5.6.

The first of these three motion blocks allows you to reposition a sprite to any
location on the stage by specifying X-axis and Y-axis coordinates for the sprite.
For example, the following script demonstrates how to reposition a sprite in the
middle of the stage, pointing it in a 90-degree direction.

go to x: [} yv: [

point in direction ENE)

go to =: [y: [}

go to

glide secs to x: [y: [}

Figure 5.6
These code blocks can be used to move a sprite to a specific location.

103

104

Chapter 5 = Moving Things Around

Figure 5.7
As this figure demonstrates, the sprite automatically moves around the stage, following the mouse-
pointer.

The following script demonstrates how to move a sprite to the location on the
stage currently occupied by the mouse-pointer.

wher

gq.:p to rru:-u-;'-a-p-:-intr:r'

Figure 5.7 shows an example of the output that is generated when this script is
run. If you look closely, you will see that in each of the three examples, the cat
sprite remains positioned directly under the mouse-pointer no matter where it is
moved on the stage.

This next script demonstrates how to reposition a sprite to a specific location on
the stage. Instead of simply making the sprite appear at a specified location, as
demonstrated in the previous two examples, this script repositions the sprite by
moving or gliding to its new position in a smooth motion.

glide) secs to x: GE y: (EH)

(wait @ secs

| glide @ secs to x: EID) v: EE

Changing Sprite Coordinates

Changing Sprite Coordinates

Scratch provides four motion blocks that modify the location of a sprite on the
stage either by assigning it new coordinates or by changing the sprite’s coordi-
nates by incrementing or decrementing their values. These code blocks are shown
in Figure 5.8.

The following script demonstrates how to move a sprite across the stage in a series
of eight steps. When first started, the script moves the sprite to the left-hand
side of the stage, and then, using a loop, the sprite is moved by incrementing the
value assigned to the X-axis coordinate by 50 and its Y-axis coordinate by —10 each
time the loop repeats itself. As a result, the sprite is repeatedly repositioned and
thus moved across the stage (in a descending angle over a period of eight seconds).

wait @ secs.
| change x by

change ¥ by
e

Bouncing Sprites Around the Stage

As a sprite is moved around the stage, it may eventually come into contact with
one of the edges of the stage. Using the motion block shown next, you can
instruct Scratch to bounce the sprite off of the edge of the stage.

change x by

set x to (@

change y by

set y to [@)

Figure 5.8
These code blocks provide the ability to modify a sprite’s location by changing its coordinates.

105

106

Chapter 5 = Moving Things Around

The following script demonstrates how to use this code block to bounce a sprite
around the stage:

| move m steps

on edge, bounce

This script reverses the direction that a sprite is traveling whenever it collides
with the edge of the stage. If you were to add this script to the cat sprite in a new
application, the cat would move across the stage from side to side until you
halted the application’s execution.

Keeping Track of Sprite Coordinates and Direction

Scratch provides three motion (reporter) blocks that can be used to retrieve and
display information regarding the value of the sprite’s X- and Y-coordinates as
well as the sprite’s direction. These code blocks are shown in Figure 5.9.

Note

Scratch'’s stage coordinate system allows for a coordinate range of —240 to 240 on its X-axis and
a coordinate range of 180 to —180 on its Y-axis.

To set up an example that demonstrates how to work with these reporter blocks,
create a new Scratch application and add the following script to the default cat
sprite.

if on edge, bounce

When executed, this script will move the cat sprite around the stage to wherever
the mouse-pointer is located, bouncing it off the edge of the stage when neces-
sary. After adding the script, select each of the reporter blocks by clicking on

Taking Advantage of Scratch Cards 107

x position
¥y position

direction

Figure 5.9
These code blocks provide the ability to retrieve and display a sprite’s coordinates and direction.

l.Sp_ritel. = position mJ
(Sp‘ritel. y position mj

spritel direction TR

Figure 5.10
Displaying a sprite’s coordinates and direction.

the check box just to the left of each block in the blocks palette. Once you have
done this, three monitors should be visible on the stage, as demonstrated in
Figure 5.10.

Once you have set up the application’s monitors, run the application, move the
mouse-pointer around the stage, and keep an eye on the values reported by the
monitors.

Taking Advantage of Scratch Cards

One resource available to Scratch programmers is Scratch cards. Scratch cards are
PDF files that you can print, cut out, glue together, and then use as a quick
reference for performing certain tasks. You can download Scratch cards for free
at http://scratch.wik.is/Support/Scratch_Cards, as shown in Figure 5.11.

The front of each Scratch card identifies the type of task that the card is designed
to show you how to perform, and the back of the card provides detailed

http://scratch.wik.is/Support/Scratch_Cards

108 Chapter 5 = Moving Things Around

Imaging = prograis share [|[searen |

) ¢ hame projects galleries ¥ sbufd f
S<RAT:H
(o, NyEe A Y (Flg
— e

Print page More ¥ .'ﬁ_mm_gwmw_';ﬂg 3

Scratch Cards ‘

scratch cards provide a quick way to leamn new Scratch code.

The front of the card shows what you can do. The badk shows how to do it

Click. to view and print each card, (The cards are in POF format, 1MB or less.)

Take a lock at the projects implemented using the instructions in the Scratch Cards

/- Change Color

F @ Internet | Protected Mode On 0% -

Figure 5.11
Scratch cards serve as quick reference for performing specific types of tasks.

instruction on how to perform the task. As of the writing of this book, a dozen
Scratch cards were available. The PDF file for each of these Scratch cards is
descriptively named to identify the task that the card teaches you to perform. The
list of available Scratch cards includes:

= Change Color
m Move to a Beat

m Key Moves

Say Something
= Glide

Follow the Mouse

m Dance Twist

Taking Advantage of Scratch Cards

Interactive Whirl

m Animate It

Moving Animation

Surprise Button

m Keep Score

Figure 5.12 shows what the PDF file for the Key Moves Scratch card looks like. As
you can see, the left-hand side of the Scratch card demonstrates the movement of

G it scrstchowikis/ @api/dekiffiles/1 1/ =Key-Moves. pof = |45 | X | Google 2~
| File Edit GoTo Favorites Help .
G | Q hpyscrtchaviis @apidetiffies 13/ =Key-M.. v B v B Poger v ook v @r-

Use the arrow keys to move your sprite.

¥4

] [4 1t b b1|© O] i

Dane & Unknown Zone | Protected Mode: On

Figure 5.12
The Key Moves Scratch card demonstrates how to move a sprite around the stage using the keyboard
arrow keys.

109

110

Chapter 5 = Moving Things Around

the sprite, and the right-hand side of the card provides an example of the code
blocks needed to move the sprite in each of the four demonstrated directions. In
addition, each Scratch card includes an extra tip that helps you further enhance
the task being performed.

Tip

There are five Scratch cards that provide information specific to moving sprites around the stage.
These Scratch cards are briefly described here:

m Key Moves. Demonstrates how to move a sprite around the stage using keyboard keys.

m Move to a Beat. Demonstrates how to create an animated dance sequence that moves to
a drum beat.

m Moving Animation. Demonstrates how to animate the movements of a sprite using an
alternative series of costumes.

m Glide. Demonstrates how to move a sprite around the stage from one point to another in a
smooth motion.

m Follow the Mouse. Demonstrates how to script the movement of a sprite so that it follows
the movement of the mouse-pointer on the stage.

Creating the Virtual Scratch Fish Tank

The rest of this chapter is dedicated to leading you through the development of a
virtual fish tank application. In this Scratch application, five sprites, representing
a range of colorful fish and a small octopus, busily swim around the fish tank,
represented by a suitable background, as demonstrated in Figure 5.13.

This application will be created by following a series of steps, as outlined here:

1. Creating a new Scratch application project.

2. Adding a stage background.

3. Adding and removing sprites to and from the project.

4. Importing a sound file into the application.

5. Adding the programming logic required to play a background sound effect.
6. Adding the programming logic required to animate fish tank activity.

7. Saving and executing your work.

Creating the Virtual Scratch Fish Tank

Figure 5.13
An example of the virtual fish tank application in action.

Step 1: Creating a New Scratch Project

The first step in creating this Scratch project is to start Scratch, thereby auto-
matically creating a new Scratch application project. Alternatively, if you already
have Scratch up and running, you can create a new project by clicking on the New
button located on the Scratch menu bar.

Step 2: Adding a Background to the Stage

Once you have a new application project ready to go, let’s begin by adding a
suitable background to the stage that will give the virtual fish tank an appropriate
look and feel. To set this up, click on the blank thumbnail representing the stage in
the sprite list and then click on the Backgrounds tab located at the top of the
scripts area. Next, click on the Import button, displaying the Import Background
window. Double-click on the Nature folder, scroll down and select the underwater
graphic, and then click on the OK button. Once the new background has been
added, go ahead and remove the blank stage background from the application.

Step 3: Adding and Removing Sprites

The next step in the development of the virtual fish tank application is to add
sprites to the application representing different marine life. Before doing this,
remove the cat sprite from the application, since it is not needed. To do so,

111

112

Chapter 5 = Moving Things Around

Table 5.1 Sprite Rotational Buttons

Sprite Filename Sprite Application Name
fish2 Purple

fish3 Yellow

fish4 Spotted

octopus1-a Squid

right-click on its thumbnail in the sprites list and select Delete from the popup
menu that appears. Once you have removed the cat sprite, it is time to add new
sprites needed by the application.

In total, you need to add five new sprites. Four of the sprites will represent
different fish, and the fifth sprite will represent a small octopus. To add the
octopus sprite, click on the Choose Sprite from File button located in the middle
of the new sprite button controls. This will open the New Sprite window.
Double-click on the Animals folder, scroll down and select the fish1-a sprite, and
then click on the OK button. Next, click on the sprite’s thumbnail in the sprites
area and then change the name assigned to the sprite to Blue.

Using the same set of steps described above, add the following list of sprites to the
application project, renaming each sprite as indicated in Table 5.1.

Once you have added all five sprites, move the sprites to random locations on the
stage. Next, change the direction in which each sprite moves by selecting each
sprite and then changing it in the sprite info area by repositioning the direction of
the blue line displayed on the image of the sprite.

Tip

To make the virtual fish tank more interesting, set the fish and the octopus up so that each moves
in a different direction and angle.

Step 4: Adding a Suitable Audio File to the Stage

Now that the application’s background and sprites have been added, it is time to
add an audio file that when played will give the virtual fish tank a realistic feeling.
Specifically, we’ll add an audio file that when played makes bubble sounds. To
accomplish this task, click on the thumbnail representing the stage in the sprite
list and then click on the Sounds tab in the scripts area. Next, click on the Import

Creating the Virtual Scratch Fish Tank

button to display the Import Sound window. Next, double-click on the Effects
folder and then select the Bubble audio file and click on OK.

Tip

To help keep your Scratch application as small as possible, remove the default pop audio file from
the background.

Step 5: Playing the Audio File

Now it is time to add the programming logic needed to make your new appli-
cation run. In total you will need to add six scripts to the project, one for the stage
and one for each of the application’s five sprites.

The script to be added to the stage will be responsible for playing the background
sound effect that makes the virtual fish tank sound like a real fish tank. To create
it, click on the stage thumbnail located in the sprites area and then select the
Scripts tab located at the top of the scripts area. Next, add and configure the
following code blocks exactly as shown here:

play sound Bubbles

This script consists of a hat block that will execute whenever the green flag button
is pressed. When this occurs, a loop is set up that repeatedly executes two blocks.
The first code block is a sound block that plays the audio file you previously
added to the stage. The second code block pauses script execution for four
seconds to give Scratch time to finish playing the audio file, before allowing the
loop to repeat and play it again.

Step 6: Animating the Swimming of the Fish

With the programming logic required to provide the application’s background
sound effect now in place, it is time to write the scripts that will animate the
movement of the fish and octopus. To set this up, you need to add a small script

113

114

Chapter 5 = Moving Things Around

to each of the sprites that provides the programming logic required to control the
movement of the sprites as they move (or swim) around the fish tank.

Scripting the Movement of the Blue Fish

Let’s begin by automating the movement of the sprite name Blue. Do so by
clicking on the sprite’s thumbnail and then creating the following script for it:

move steps

if on edge, bounce

As you can see, this script is set up to begin executing the moment the user
clicks on the green flag button. It contains a control block that sets up a loop
that repeats the execution of two embedded motion blocks. The first motion
block moves the sprite in its current direction every time the loop repeats. The
second motion block tells Scratch to bounce the sprite off of the edge of the
stage when reached. As a result, the sprite (blue fish) will appear to swim
around the fish tank from side to side, and depending on whether you have
adjusted its direction as instructed at the end of Step 3, it will move up and
down as well.

Scripting the Movement of the Purple Fish

Next, let’s create a script that controls the movement of the purple fish. Rather
than build this script from scratch, let’s take a shortcut. With the script for the
blue fish currently displayed on the scripts area, drag and drop the script onto the
thumbnail representing the purple sprite in the sprites list. This adds an exact
copy of the script to the purple sprite, which you can then view and modify by
clicking on the purple sprite’s thumbnail.

To make things interesting, modify the number of steps that the purple sprite is
moved from 1 to 2, as shown here:

move steps

if on edge, bounce

Creating the Virtual Scratch Fish Tank

Other than moving the purple fish at a little faster pace than the blue fish, the
programming logic that controls both fish is identical. In fact, the programming
for all of the remaining fish and the octopus is identical, except for variances in
the number of steps the sprites are moved.

Scripting the Movement of the Yellow Fish

Using drag and drop, add a copy of the purple sprite’s script to the yellow sprite
and then modify it as shown here:

| move steps

if on edge, bounce

As you can see, the yellow sprite has been configured to move at the same pace as
the blue sprite.

Scripting the Movement of the Spotted Fish

Once again, using drag and drop, add a copy of the yellow sprite’s script to the
spotted sprite and then modify it as shown here:

orever
move steps

if on edge, bounce

This time the sprite has been configured so that it moves two steps at a time.

Scripting the Movement of the Octopus

Last but not least, drag and drop the script for the spotted sprite onto the sprite
representing the octopus and then modify it as shown here:

move steps

if on edge, bounce

115

116

Chapter 5 = Moving Things Around

As you can see, this sprite has been configured to move slower than any of the
other sprites, at just a half step at a time.

Step 7: Saving and Executing Your New Scratch
Application

At this point your copy of the virtual fish tank application should be complete
and should look like the example shown in Figure 5.14.

If you have not done so yet, save your new application and then run it to see how
it looks. To save your application, click on the Save button located on the Scratch
menu bar. This will display the Save Project window, allowing you to specify the
name of the application, the location where you want to store it, your name, and
comments documenting the application and its purpose.

Purple Yellow Spotted

1 script 1 script 1 script

Figure 5.14
The completed application consists of a background, five sprites, and six scripts.

Summary

Once you have saved your application, go ahead and run it. Since all of the scripts
in the application are configured to execute when the green flag button is pressed,
all you have to do is to click on the green flag button and then sit back and relax as
you watch and listen to your virtual fish tank.

Summary

This chapter taught you how to work with all 16 motion code blocks. You learned
how to move and rotate sprites, point sprites in different directions or towards
different objects, and change a sprite’s location. You also learned how to control
whether a sprite jumps to its new location or glides to it, how to change a sprite’s
location by setting or modifying the value of its X-axis and Y-axis coordinates,
how to control a sprite’s movement when it makes contact with the edge of the
stage, and how to report on a sprite’s position and direction. You also learned
how to work with Scratch cards and create a virtual fish tank application.

117

This page intentionally left blank

CHAPTER 6 .

SENSING SPRITE POSITION
AND CONTROLLING
ENVIRONMENTAL SETTINGS

To create many interactive computer applications, you need the ability to detect
when certain things are happening. For example, in a car racing game, it would be
important to be able to detect when two cars (sprites) bump into one another,
and in a game that uses predefined keystrokes as input for controlling certain
game functions, you need to be able to detect when those keys have been pressed.
Scratch provides the ability to detect or sense when things happen using sensing
code blocks. This chapter will demonstrate how to work with various sensing
blocks and will also guide you through the creation of a new Scratch application,
the Family Scrapbook.

The major topics covered in this chapter include learning how to

m Detect mouse-pointer location and mouse button status
m Detect when keyboard keys are pressed

m Determine when a sprite collides with other objects on the stage

Keep track of a sprite’s distance from other objects and retrieve different
sprite properties

Work with a timer and detect the loudness of microphone input

119

120

Chapter 6 ®= Sensing Sprite Position

Working with Sensing Code Blocks

An important capability needed by a graphical programming language that
works with sprites is the ability to determine when certain things happen. For
example, sprite-based applications typically need to know when sprites collide
with one another or when the user presses certain keystrokes. This type of
functionality is provided in Scratch by sensing blocks.

Sensing blocks also provide the ability to determine the location of the mouse-
pointer and the ability to determine a sprite’s distance from other sprites. Sensing
blocks are colored sky blue. In total, Scratch provides access to 15 different
sensing blocks, which you can work with by clicking on the Sensing button
located at the top of the blocks palette.

Scratch organizes sensing blocks into eight sub-groupings, each of which is
separated by a blank space in the blocks palette. These sub-groupings include:

m Sensing blocks that retrieve and report on the left mouse button status and
mouse-pointer coordinates.

m A sensing block that determines when specified keyboard keys have been
pressed.

m Sensing blocks that determine if a sprite has made contact with the mouse-
pointer, another sprite, or the edge of the stage.

m A sensing block that reports on a sprite’s distance from the mouse-pointer
or another sprite.

m Sensing blocks that provide access to a built-in timer that can be used to
control the timing of application activity.

m A sensing block that retrieves a property value (X position, Y position,
direction, costume number, size, or volume) for the stage or a specified
sprite.

m Sensing blocks that report on how loud audio input coming from the
computer’s microphone is.

m Sensing blocks that work with a Scratch Board, allowing you to create
applications that can detect changes in light and sound and work with the
Scratch Board’s buttons and slider control.

Retrieving Mouse Button and Coordinate Status

Except for the reset timer code block, all sensing code blocks are reporter blocks,
designed to be embedded inside stack blocks. Examples of how to work with each of
the sensing code blocks listed above are provided throughout the rest of this chapter.

Retrieving Mouse Button and Coordinate Status

In many types of applications, the mouse-pointer is used to control the move-
ment of sprites and to affect the operation of the application in many other
different ways. The sensing blocks shown in Figure 6.1 provide access to data
about the operation of the mouse-pointer.

The first of these three code blocks retrieves the location of the mouse-pointer as
it moves along the X-axis. As was stated in Chapter 2, “Getting Comfortable with
the Scratch Development Environment,” Scratch supports a total range of —240
to 240. The second of these code blocks retrieves the location of the mouse-
pointer as it moves along the Y-axis. Scratch supports a total range of 180 to —180
on its Y-axis. The third code block is used to retrieve a true/false value that
identifies when the mouse’s button is being pressed. The following script, which
is part of a drawing application, demonstrates how to work with all three of these
sensing code blocks.

set pen size to

set pen color to

mouse dow

go to x: mouse x y: mouse y

pen down

mouse x
mouse y

mouse down?

Figure 6.1
These sensing blocks report on the mouse-pointer's coordinates and button status.

121

122

Chapter 6 ®= Sensing Sprite Position

To create the drawing application, create a new Scratch application project.
Remove the cat sprite from it and then create and add a new sprite that consists of
a single black dot. Next, select the thumbnail representing the dot and then add
the script shown above to it.

This application’s operation depends on the use of a virtual pen object that
Scratch makes available to you via pen code blocks, which you will learn about in
Chapter 12, “Drawing Lines and Shapes.” The overall operation of the appli-
cation is controlled by the script, which automatically begins executing when the
green flag button is clicked. Once started, two pen blocks are used to set the width
of the pen and the color used by the pen when drawing. Next, a forever code
block has been added to repeat the execution of all the code blocks embedded
within it.

Within the loop, an if...else code block is used to conditionally control the
execution of three additional statements. The if...else code block’s execution is
controlled by examining the value returned by a sensing block that returns a
value of true when the user presses the mouse’s left button and false if the
mouse’s left button is not being pressed.

When the user presses the left mouse button, the two statements located at
the top of the if...else code block are executed. The first statement moves
the sprite to the same location as the pointer, and the second code block
places Scratch’s virtual pen in a down position, allowing drawing to begin. As
a result, a blue line is drawn anywhere on the stage where the mouse-pointer
is moved when the left mouse button is being pressed. The code block located
at the bottom of the if...else code block is executed whenever the user
releases the left mouse button, lifting the virtual pen and halting any drawing
operations.

Figure 6.2 demonstrates the operation of the drawing application.

—_—

Koo

Figure 6.2
An example of the drawing application in action.

Determining when Keys Are Pressed

Determining when Keys Are Pressed

One problem with the drawing application is that there is no way to clear the
screen and start over should you make a mistake when drawing. This can be easily
rectified using the sensing code block shown in Figure 6.3, which retrieves a true
or false, depending on whether a specified key is pressed.

To see an example of how to work with this code block, let’s modify the previous
drawing application by editing the script belonging to the application’s sprite, as
shown here.

set pen size to B

set pen color to

go to X: Mouse X ¥ mouse y

down
[pen =

i -'f"lkey space | pressed? |
dear

As you can see, three new code blocks have been added that clear the stage
whenever the spacebar is pressed. Figure 6.4 shows an example of the drawing
application in operation. Here, the application is used to draw the name Lee on
the stage. Next, the spacebar is pressed, clearing the stage, after which an image of
a tree has been drawn.

kay space |pressed?

Figure 6.3
This sensing block can be used to detect when the user presses a specified keyboard key.

Leo

Figure 6.4
This enhanced version of the drawing application can be used to draw and erase.

123

124

Chapter 6 ®= Sensing Sprite Position

Tip

In addition to detecting keystrokes using a sensing code block, you can also use the control code block
shown in Figure 6.5. The difference between these two code blocks is that the sensing code block can
be used within a loop to continuously determine that a specified keyboard key is being pressed. The
control block, on the other hand, only executes once when the specified key is initially pressed and is
therefore good for initiating an individual action and not for facilitating the repeated execution of an
action. You will learn more about this code block later in Chapter 9, “Conditional and Repetitive Logic."

Figure 6.5
This code block is used to initiate an action whenever a specific keyboard key is pressed.

Determining when Sprites Collide with Other Objects

One key programming requirement of many computer games is the ability to
determine when a sprite collides with another sprite, the edge of the screen, or the
mouse-pointer. Scratch provides the ability to perform collision detection using
the three sensing code blocks shown in Figure 6.6.

The first code block shown in Figure 6.6 can be used to determine when a sprite
makes contact with a specified sprite, the edge of the stage, or the mouse-pointer.
The list of objects that this code block can detect is accessible in the block’s drop-
down list. As an example of how to work with this code block, modify the
previous Scratch application by replacing its script with the one shown here.

mouse down?

go to x: mouse x y: mouse y

touching ed:

say for @8 secs

This script demonstrates how to determine when a sprite comes into contact with
the edge of the stage. This script executes whenever the green flag button is
clicked and uses a forever block to set up a loop that repeatedly executes all
embedded code blocks. Within the loop, you’ll find a conditional if block that
executes embedded statements when the mouse’s left-button is being pressed.

Determining when Sprites Collide with Other Objects 125

Figure 6.6
These sensing blocks can be used to look for collisions.

Contact!

Contact!

Contact!

Contoct!

Figure 6.7
An example of the text that is displayed whenever the sprite makes contact with the edge of the stage.

When this is the case, a motion block is used to make the application’s sprite
follow the mouse-pointer around the stage. A second sensing code block is used
within another conditional if code block to detect when the sprite makes contact
with the edge of the stage. When this occurs, a looks code block is executed,
displaying a text message in a voice bubble.

Figure 6.7 demonstrates the output that is displayed when you rerun the application
with this new script and move the mouse-pointer to one of the edges of the stage.

Next, let’s take a look at an example of how to work with the second sensing block
shown in Figure 6.7. This code block can be used to detect when a sprite makes
contact with a specific color on the stage. To see a working example of how to
work with this code block, create a new Scratch application and then create and
add a new sprite in the shape of a red rectangle (using the Paint Editor), placing it

126

Chapter 6 ®= Sensing Sprite Position

Figure 6.8
This red square will be used to demonstrate the ability to detect a collision with a specific color on the

stage.

in the middle of the stage. Next, add a second sprite to the application by clicking
on the Choose New Sprite from File button, opening the New Sprite window.
Next, drill down into the Fantasy folder and select the dragonl-b sprite and then
click on OK. The stage for your new application should now look like the
example shown in Figure 6.8.

Next, add the following script belonging to the sprite representing the dragon.
When executed, this script plays an audio file whenever the sprite is moved into
contact with the red square in the center of the stage.

play sound pop

Note that to correctly set the color specification in the sensing block, you must
click on the color block embedded within the control. This displays a small
eyedropper graphic that you can then move to the area on the stage that contains
the color you want to detect. Click on that color, and Scratch will automatically
change the code block’s color to match the color that you clicked on.

At this point you should have everything set up and ready to run. Go ahead and
run the application and then press and hold the left mouse button and move the

Determining Distance

mouse-pointer on and off of the red rectangle in the middle of the stage and listen
for the audio file to be played.

Using the previous code block, you can set up an application to detect a collision
any time any part of a sprite comes into contact with a specific color on the stage.
In the previous example, this occurs whenever any part of the dragon sprite
(head, tail, wings, flames, etc.) comes into contact with the red rectangle sprite.

However, if you prefer, you can use the third sensing code clock shown in
Figure 6.6 to set up a more specific type of collision test. Specifically, what this
code block does is allow you to specify a color on the sprite that must make
contact with another color on the stage for a collision to occur. To get a better
understanding of the difference between this code block and the previous sensing
code block, look at the following script.

The following script demonstrates how to use the second of these sensing blocks
in a script that plays an audio file whenever a specified color within a sprite comes
into contact with a specified color on the stage.

mouse down? |

go to x: mouse x y: mouse y

color [l is touching 2

In this example, the sensing code block has been replaced. Now, for a collision to
occur, the yellow color on the sprite must come into contact with the red color on
the stage. If you were to replace the script in the previous application with this
script, then the only time a collision will occur is when the yellow flames coming
out of the dragon’s mouth touch the red rectangle sprite, as demonstrated in
Figure 6.9.

Determining Distance

Rather than detecting when one sprite collides with another sprite, you may want to
detect when one sprite comes within a certain distance of another sprite or the
mouse-pointer. You can do this using the sensing code block shown in Figure 6.10.

127

128

Chapter 6 ®= Sensing Sprite Position

3

No collision Collision

Figure 6.9
Setting up a more restrictive collision test.

Figure 6.10
This sensing block reports on a sprite’s distance from a specified object.

To develop an understanding of how to work with this code block, modify the
previous Scratch application, replacing the dragon sprite’s script with the script
shown here.

play sound pop

One you have replaced the script, run the application and then move the mouse-
pointer around the stage. When you do, the dragon sprite will follow, and
whenever it moves within 150 steps of the red rectangle sprite, an audio file will
be repeatedly played.

Working with a Timer

Another pair of sensing code blocks that you need to become familiar with is
shown in Figure 6.11. These code blocks provide the ability to enable and work
with Scratch’s built-in timer.

The first code block resets the timer back to its default value of zero, and the
second code block retrieves a number specifying how many seconds have passed
since the timer started running. Using Scratch’s timer, you can control the pace

Retrieving Stage and Sprite Data

reset timer

[0 timer

Figure 6.11
These sensing blocks provide the ability to enable and use a timer within your Scratch application.

of animation and the operation of your Scratch applications. For example, you
would need to use these controls to keep track of time when players are given a
certain amount of time in which to make a move.

The following example demonstrates how to use both of these timer code blocks
to create a script that repeatedly plays an audio file for five seconds.

| play sound pop

Retrieving Stage and Sprite Data

In addition to determining mouse status, sprite collisions, and the distance
between sprites, you can use the code block shown in Figure 6.12 to retrieve sprite
and stage information.

This code block provides easy access to a number of pieces of information,
including:

m X position

= Y position

m Direction

m Costume number
m Size

m Volume

129

130

Chapter 6 ®= Sensing Sprite Position

o of Spritel

Figure 6.12
This sensing block can be used to retrieve information about a number of object attributes.

As an example of how to work with this code block, take a look at the following
script, which retrieves the X coordinate of a sprite named Sprite 2 and plays an
audio file whenever that sprite is moved to the right-hand side of the stage
(between coordinates 1 and 240).

Retrieving Audio Data

In addition to sensing mouse-pointer and keyboard data, collisions, distance,
and other stage and sprite properties and working with the timer, Scratch also
provides access to a pair of sensing blocks, shown in Figure 6.13, that allow you to
sense sound input from the computer’s microphone (if it has one) and to use that
input within your Scratch applications.

The first of these two sensing blocks retrieves a number, from 1 to 100, repre-
senting the volume of the computer’s microphone, and the second code block
retrieves a true/false value, depending on whether a sound value of 30 or greater
is detected through the computer’s microphone.

The following example demonstrates how to create a script that plays an audio file
named pop whenever a loud sound is detected through the computer’s microphone.

Code Blocks That Work with Sensor Boards 131

Figure 6.13
These sensing blocks are used to report on how loud a sound is being played.

| loudness [T
loud? EEES

Figure 6.14
Using monitors to keep track of the loudness of audio playback and input.

Both of the code blocks shown in Figure 6.13 are monitor blocks, so if you want,
you can display their results on the stage, as demonstrated in Figure 6.14.

Code Blocks That Work with Sensor Boards

Scratch supplies additional sensing code blocks, as shown in Figure 6.15. In order
to work with these code blocks, you need a Scratch Board. A Scratch Board is a
special piece of hardware that you can buy from the Scratch website and then
attach to your computer. You can use the Scratch Board to collect and process
different environmental and user-provided input.

The first of these two blocks retrieves the value reported by one of the sensors on
a Scratch Board. The second code block retrieves a Boolean value of true or false,
depending on whether a specified sensor is being pressed. Learning how to work
with a Scratch Board is outside of the scope of this chapter. Instead, you will learn

132

Chapter 6 ®= Sensing Sprite Position

[l sensor button pressed |2

Figure 6.15
These sensing blocks are used in conjunction with a Scratch Board.

how to programmatically interact with and control Scratch Boards in Chapter 14,
“Collecting External Input Using a Scratch Board.”

Creating the Family Scrapbook Application

The remainder of this chapter will guide you through the development of your
next Scratch application, an electronic family scrapbook. In total, this application
will consist of one sprite, a blank stage, and three scripts. Once created, you can
use this application to display any number of electronic photographs in an
automated photo album that displays pictures at three-second intervals. Each
picture in the application is actually just a costume added to the application’s
sprite. Figures 6.16 and 6.17 show how the application looks when displaying two
of the photo book’s pictures.

The development of this application project will be created by following a series
of steps, as outlined here:

1. Creating a new Scratch application project.

2. Adding and removing sprites and costumes.

3. Importing a sound file into the application.

4. Adding the programming logic required to play background music.

5. Adding the programming logic required to manage the display of photographs.

6. Saving and executing your work.

Step 1: Creating a New Scratch Project

The first step in creating the Family Scrapbook project is to create a new Scratch
application project. Do so either by opening Scratch, thereby automatically
creating a new Scratch application project, or by clicking on the New button
located on the Scratch menu bar.

Creating the Family Scrapbook Application 133

Figure 6.16
An example of one of the sprite’s costumes.

Figure 6.17
Another example of one of the sprite’s costumes.

Step 2: Adding and Removing Sprites and Costumes

This application consists of a single sprite, which will be used to display all of the
application’s photographs (as costumes). Therefore, the default cat sprite will not
be needed and should be removed. After removing the cat sprite, click on the
Choose New Sprite from File button to open the New Sprite window. Using this
window, navigate to the folder containing the electronic image files (photo-
graphs) that you plan on displaying, and then select one of these files to be used as
the application’s sprite.

Click on the thumbnail representing the new sprite (in the sprites list) and then
click on the Costumes tab located at the top of the scripts area. Next, click on the

134

Chapter 6 ®= Sensing Sprite Position

& Pictures

MNew costume: @ m

3
IMODD3Z7

T
2
.=
s A m m
IMODD221
Edit J{ Copy
IMDDD225

Picture 013

IMODDZ211

Edit) copv |
1M000210

IMODD207

Figure 6.18
You can add as many pictures as you want to the sprite’s list of costumes.

Import button, opening the Import Costume window. Using this window, add
another picture to the application. Repeat this process as many times as necessary
to add all of the image files that you want to be included as part of the family
scrapbook, as demonstrated in Figure 6.18.

Step 3: Adding a Suitable Audio File to the Stage

To make the Family Scrapbook application more enjoyable, let’s add a little
background music to help set the mood. To add the music file, select the stage
thumbnail in the sprites list and then click on the Sounds tab located at the top of
the scripts area. Next, click on the Import button to display the Import Sound
window and then double-click on the Music Loops folder and then select the
GuitarChordsl audio file and click on OK, adding the sound file to the appli-
cation project, as shown in Figure 6.19.

Creating the Family Scrapbook Application

Figure 6.19
Adding background music to be played when the application executes.

Step 4: Playing the Audio File

The next step in the development of the application project is to begin adding the
programming logic. In total, you will need to add three scripts to the project, one
for the stage and two for the application’s sprite.

The script to be added to the stage will be responsible for playing the applica-
tion’s background music. To create this script, click on the stage thumbnail
located in the sprites list and then select the Scripts tab located at the top of the
scripts area. Next, add and configure the following code blocks exactly as shown
here.

set volume to

This script manages the repeated playback of the application’s audio file for as
long as the application is run. Audio file playback is performed using a pair of
sound blocks, which you will learn about in Chapter 11, “Spicing Things Up with
Sounds.”

Step 5: Displaying the Photographs

Now it is time to add the programming logic that is responsible for displaying all
of the photographs that make up the Family Scrapbook. To set this up, you need
to add a small script to the application’s sprite that specifies the programming logic
required to automate the display of all of the application’s photographs, at three-
second intervals. In addition, you will add a second script to the application

135

136

Chapter 6 ®= Sensing Sprite Position

that will allow the user to manually control the display of the application’s
photographs.

Scripting the Operation of the Family Scrapbook

The code blocks that are responsible for automating the operation of the
scrapbook are shown here:

I next costume

This script is automatically executed when the user clicks on the green flag button.
When this happens, a looks block is executed. This block specifies a specific costume
to be displayed when the application is first started (the first costume in the costume
list). Next, a loop is set up that repeatedly executes the two statements embedded
within it. The first code block located inside the loop pauses the script’s execution
for three seconds, after which a second looks block is used to switch the sprite’s
costume to the next costume in the sprite’s costume list.

Allowing for the Manual Operation of the Family Scrapbook

If the user prefers, rather than viewing photographs in the Family Scrapbook as
an automated slideshow, the contents of the scrapbook can be manually browsed
by clicking on the application’s sprite, which causes the next costume (photo-
graph) to be displayed. To provide the user with this manual option, add the
following script to the application’s sprite.

next costume

Step 6: Saving and Executing Your
New Scratch Application

Okay, assuming that you have been following along and creating your copy of the
Family Scrapbook application as you made your way through this chapter, then
your copy of the Family Scrapbook application should look something like the
example shown in Figure 6.20.

Summary

Figure 6.20
The completed application consists of a blank stage and a single sprite with 11 costumes and two

scripts.

So, if you have not done so yet, save your new application by clicking on the Save
button located on the Scratch menu bar. This will display the Save Project
window, allowing you to name the application and specify the location where
you want to store it. Once saved, switch to Presentation mode, click on the green
flag button, and kick back and enjoy listening to and watching your new
application. Alternatively, start clicking on the application’s sprite and go
through the contents of the Family Scrapbook at your own pace.

Summary

This chapter has provided a review of all of the Scratch sensing code blocks
(except for the ones that work with Scratch Boards). You learned how to detect
collisions, identify when the left mouse button or a keyboard key is pressed, and
even to determine when a sprite comes into contact with different colors on the

137

138

Chapter 6 ®= Sensing Sprite Position

stage. You learned how to work with the timer as a means of controlling
application activity. This chapter also showed you how to retrieve different
property values belonging to sprites and the stage and to detect the loudness of
microphone input. Use of the information presented in this chapter is key to the
development of interactive Scratch applications and games.

CHAPTER "7 -

STORING AND RETRIEVING
DATA

All computer applications require some sort of data with which to work as they
execute. This is true of even the simplest applications. The data processed by an
application may be embedded within it. Data may also be randomly generated or
collected from the user as the application executes. In order to work with and
manipulate data, programmers need the ability to store, retrieve, and modify
data when an application runs. Within Scratch applications, data is managed
using variables. The goal of this chapter is to teach you everything you need to
know to begin developing Scratch applications that can collect, store, and process
application data.

The major topics covered in this chapter include:
m How to create local and global variables
m How to use variables as a means of storing and retrieving data

m How to delete variables that are no longer needed

m How to view data stored in local variables belonging to other sprites

Learning How to Work with Application Data

Like all computer programs, Scratch applications need to be able to process and
store data. Data is any type of information that your Scratch applications collect,
process, and store when executing. Data can also be collected when the user

139

140

Chapter 7 = Storing and Retrieving Data

El Hello!

Figure 7.1
An example of text embedded within a looks code block.

interacts with the application using the keyboard or mouse. Data may be gen-
erated by your applications such as when you create a Scratch project that
generates and then uses random numbers (covered in Chapter 8). Data may also
be hard-coded within your Scratch application projects. For example, the code
block shown in Figure 7.1 can be used to store and display a text string within a
script.

When executed, a script containing this looks code block will display the hard-
coded text string inside a voice bubble. Like most programming languages,
Scratch lets you work with a number of different types of data. Each of these
different types of data, listed next, is handled differently by Scratch.

m String

Boolean

Integer

m Real

A string is a piece of text data that you hard code within Scratch applications
using different types of looks code blocks, which you will learn how to work with
in Chapter 10, “Changing the Way Sprites Look and Behave.” Boolean data is
data that is automatically generated by Scratch when you work with different
types of numbers code blocks (which you will learn about in Chapter 8). A
Boolean value represents data that has an assigned value of either True or False.
For example, any time you compare one numeric value against another to see if
they are equal, Scratch returns a Boolean value. Based on the result of that
analysis, you can alter the way your Scratch applications execute using control
blocks, which are covered in Chapter 9, “Conditional and Repetitive Logic.”

An integer is a numeric value that does not include a decimal point (sometimes
referred to as a whole number). Scratch lets you enter integer values as input into
numerous different types of code blocks. It also allows you to store numeric data
inside variables, allowing you to store, retrieve, and manipulate the data as

Storing Data in Variables

necessary during application execution. A real number is a number that includes
a decimal number.

Scratch handles different types of data differently. For example, string data can
only be displayed by embedding it within looks code blocks. Integer and real data
can also be embedded within code blocks and displayed in monitors. In addition,
integer and real data can be added, subtracted, and manipulated in all the dif-
ferent ways that you would to be able to manipulate numeric data. Scratch also
allows you to use integers and real numbers interchangeably.

Note

Industrial strength programming languages Microsoft C++ and Visual Basic support a much wider
range of data types. However, they all support the same basic types of data that Scratch does.

Storing Data in Variables

As has already been stated, you can embed numeric data inside different types of
code blocks, using it to control the operation of scripts. You can also store
numeric data collected when your applications execute using variables. In
Scratch, variables allow you to store, retrieve, and modify numeric data.

Note

Scratch cannot store string or Boolean data in variables.

Creating Scratch Variables

In order to store, modify, and retrieve data in a Scratch application, you need to
create variables. In order to work with variables within your Scratch applications,
you must first define and add them to your application projects. This is done by
clicking on the Variables button located at the top of the blocks palette and then
clicking on the Make a Variable button, as shown in Figure 7.2.

Once this button has been clicked, Scratch displays the window shown in Figure 7.3,
allowing you to assign a name to the variable.

Make a wariable
Delete a wariable

Figure 7.2
Creating and deleting Scratch variables.

141

142

Chapter 7 = Storing and Retrieving Data

[S s S
?

variable name?

® For all sprites () For this sprite only

0K J Cancel
> -

_—
Figure 7.3
Assigning a name to a new Scratch variable.

change PlayerScore by Increment a Variable’s Value

set PlayerScore to [

Assign a Variable’s Value

[£d ' PlayerScore’ Retrieve a Variable’s Value

Figure 7.4
Scratch creates three new code blocks for each variable that you create.

| Playerscore [T |

Figure 7.5
Every new variable supports a monitor that displays its value.

The name that you assign will be used to create and add three new code blocks to
your Scratch project, as shown in Figure 7.4.

In addition, a monitor showing the variable’s value is automatically displayed on
the stage, as demonstrated in Figure 7.5.

Using the three code blocks created for every variable, you can assign an initial
value to the variable, change its value while your application is running, and
display a monitor on the stage, which shows the variable’s value.

Assigning Variables to Sprites and the Stage

Variables in Scratch applications belong to the sprites in which they are defined
(or to the stage). Therefore, it is important that when adding new variables to
your application, you select the thumbnail for the sprite (or stage) where the
variable belongs. For example, variables that need to be accessed by different

Storing Data in Variables 143

scripts belonging to different sprites may best be added to the stage, whereas a
variable needed only by a specific sprite should be added to that sprite.

Assigning Names to Your Variables

Unlike many programming languages, Scratch is very flexible when it comes to
naming variables. You can make variable names as long or as short as you want.
Variable names can include:

m Letters
= Numbers
m Special characters

m Blank spaces

Because Scratch creates an endless supply of code blocks for each new variable
that you define, it eliminates any concerns about case-sensitivity, making things a
lot easier to work with.

Tip

Make your variable names as descriptive as possible. This will help make your scripts self-
documenting. Although Scratch variable names can be extremely long, it's a good idea to limit
their length to a maximum of 30 characters. This provides you with plenty of room to create
descriptive, manageable variable names.

Understanding Variable Scope
One very important concept that you need to understand when working with
variables is variable scope. A variable’s scope identifies the location within an
application where the variable’s value can be modified. Scratch supports two
levels of variable scope, as outlined here:

m Local. Variables that can be modified only by scripts belonging to the sprite
in which the variable is defined.

m Global. Variables that can be modified by any script in an application.

Note

Although local variables can only be modified by scripts belonging to the sprite in which they are
defined, their assigned values can be retrieved (not modified) by scripts belonging to other sprites
using sensing code blocks, as demonstrated a little later in this chapter.

144

Chapter 7 = Storing and Retrieving Data

)

wariable name?

Counter

() For all sprites @ For this sprite only

0K Cancel

- R —

Figure 7.6
Creating a local variable named Counter.

Creating Local Variables
Local variables can be modified only within the sprite in which they are defined.
The following procedure outlines the steps involved in creating a local variable.

1. Select the sprite (or stage) to which the variable is to be added.
2. Click on the Variables button located at the top of the blocks palette.
3. Click on the Make a Variable button.

4. Enter the name you want to assign to the variable and then select the For
This Sprite Only option, as demonstrated in Figure 7.6.

Since a local variable can only be modified within the sprite to which it has been
added, it cannot be modified by scripts belonging to other sprites. If you need a
variable that can be accessed by any script within an application, create a global
variable as discussed in the next section.

Creating Global Variables

Unlike local variables, a global variable’s value can be modified by any script
within the application where it has been defined. You use the exact same pro-
cedure to create a global variable as you do when creating a local variable, the
only difference being that you need to leave the default For All Sprites option
selected when naming your variable, as demonstrated in Figure 7.7.

Tip

It is considered a good programming practice to restrict the scope of all variables to local whenever
possible. This helps to make your applications easier to maintain and eliminates the possibility that
you might accidentally modify the variable’s value using scripts belonging to other sprites.

Accessing Variables Belonging to Other Sprites 145

Yariable name?

Total Score

@ For all sprites) For this sprite only

DK Cancel

|

Figure 7.7
Creating a global variable named Total Score.

- MNoOfStrikes

Playerscore
TotalScore

Figure 7.8
Deleting a variable that is no longer needed.

Deleting Variables when They Are No Longer Needed

Over time, you may find yourself making numerous changes to your Scratch
projects. As you do, you may find that certain variables are no longer needed by
your applications. If this is the case, you can clean up your applications by
deleting these variables from your projects. Doing so is very easy: First, make sure
that any references to the variable within the application’s scripts have been
removed and then click on the Delete a Variable button, as demonstrated in
Figure 7.8, and select the variable that you want to delete. In response, Scratch
will delete the variable from the sprite to which it was added.

Caution

If you delete a variable from a sprite without first removing references to the variable in the
sprite’s scripts, Scratch will delete the variable but will also leave in place any code blocks in the
application’s scripts that reference that variable. As a result, things will not work properly.

Accessing Variables Belonging to Other Sprites

Although data stored in local variables can only be changed by scripts belonging
to the sprite to which the variables have been assigned, Scratch does allow scripts
belonging to other sprites to view data stored in variables belonging to other
sprites. To view data stored in another sprite’s local variables, you need to use the
sensing block shown in Figure 7.9.

146

Chapter 7 = Storing and Retrieving Data

Figure 7.9
Using this code block, you can create a script that can view data stored in another sprite's local
variables.

W position | f Cat
posTion o : a M
Cat
Dog

Figure 7.10
Specifying the name of the sprite whose variable you want to access.

- positio e
SRR - ocition

¥ position
direction

costurne #
size
wolurme
MoOflurmnps

Figure 7.11
Selecting the variable whose data you want to access.

This code block lets one sprite retrieve another sprite’s X position, Y position,
direction, costume number, size, and volume. It also lets you retrieve values
assigned to another sprite’s variable. As demonstrated in Figure 7.10, you can
click on the code block’s right-hand pull-down menu, and it will display a listing
made up of the stage and all of the sprites in the Scratch application.

After selecting the stage or a sprite, you can use the drop-down menu located on
the left-hand side of the code block to select and retrieve information for any of
the specified items that are listed. A gray horizontal divider bar located at the
bottom of the resulting list denotes the sprite’s list of variables, separating the list
from other available data, as demonstrated in Figure 7.11.

Using this code block, you can retrieve data stored in any sprite’s local variables.
However, all you can do is read the value assigned to those variables; you cannot
modify them. The only variables that can be remotely modified are global
variables.

Two Quick Examples

Slider range:
Min: Max: 100
1] 4 Cancel
| |
Figure 7.12

Configuring the upper and lower limits of a variable's slider control.

Working with Variable Monitors

Asyou learned back in Chapter 3, “A Review of the Basic Components of Scratch
Projects,” Scratch supports the display of monitors for many of its code blocks,
including variable code blocks. In addition to being able to display a variable’s
value in either normal or large readout, variable monitors also support a third
slider bar monitor format. To display a slider bar for any variable, enable the
display of the variable’s monitor and then right-click on the resulting monitor
and select the Slider option from the popup menu that is displayed.

Sliders have a small round handle on them that you can drag to modify the value
assigned to a variable. By default, you can use the slider to assign a value in the range
of 1 to 100 to its variable, although you can assign any value to the variable by
keying it into the code block’s input field. If you need to, Scratch will let you change
a slider bar’s range by right-clicking on it and selecting the Set Slider Min and Max
option from the popup menu that is displayed. When you do this, the window
shown in Figure 7.12 displays, allowing you to specify any range you want.

Two Quick Examples

To help you become more comfortable with working with variables, let’s look at
two quick examples. In the first example, shown next, a script has been created
that when executed will display the value assigned to a variable named Counter.
Remember, by default every variable that you create has a reporter block with an
associated monitor, which Scratch displays by default on the stage.

change Counter by

147

148

Chapter 7 = Storing and Retrieving Data

Note

To set up and run this example, you must create a new application and add a variable named
Counter to it and then add the script to the application’s default script.

This script has been set up to execute whenever the green flag button is pressed. It
uses a control block to set up a loop that repeats the execution of two embedded
code blocks a total of 10 times. Each time the loop executes, the value assigned to
a variable named Counter is increased by 1. The next statement pauses the loop
for one second before allowing it to continue running.

By default, Scratch assigns a default value of zero to all new variables, which is
why the first time you run the previous script, it counts from 1 to 10. However, if
you run it again, you will notice that it will count from 11 to 20. If you want, you
can change this behavior by explicitly assigning an initial value to the Counter
variable, as demonstrated in the following example:

set Counter to (@)

change Counter by

Here, the value of Counter has been set to 0 through the addition of a new
variable block at the beginning of the script, immediately after its hat code block.
As a result, no matter how many times this script executes, it always counts from
1 to 10.

Developing the Basketball Quiz Project

The rest of this chapter is devoted to guiding you through the development of
your next Scratch application, the NBA Trivia Quiz. This application makes
extensive use of variables to store and retrieve player input and to keep track of
the player’s quiz results. In total, the application is made up of a background, six
sprites, and six scripts.

When executed, this application presents the user with an electronic quiz made
up of five questions, designed to evaluate the user’s knowledge of NBA trivia.

Developing the Basketball Quiz Project

Figure 7.13 shows an example of how the game looks when first started. To begin
game play, the user must click on the sprite representing the game’s hostess, at
which point she will begin administering the quiz.

Figure 7.14 provides an example of how the hostess interacts with the user when
administering the quiz.

The hostess provides the user with immediate feedback after each question is
answered, letting the user know if the answer was correct or incorrect. In
addition, the user’s score is automatically tabulated after each answer is evaluated
and displayed in a monitor located at the lower right-hand side of the stage.

Welcome to the NBA 1'rivia

Figure 7.13
The NBA Trivia Quiz presents the user with a series of multiple choice questions.

e A frivia

Figure 7.14
The user answers questions by clicking on buttons labeled A, B, C, and D located on the right-hand side

of the stage.

149

150

Chapter 7 = Storing and Retrieving Data

The development of this application project will be created by following a series
of steps, as outlined here:

1. Creating a new Scratch application project.

2. Adding a background to the stage.

3. Adding and removing sprites and costumes.

4. Adding variables needed by the application.

5. Adding scripts to each button sprite to collect user answers.

6. Adding the programming logic required to administer the quiz.

7. Saving and executing your work.

Step 1: Creating a New Scratch Project

The first step in creating the NBA Trivia Quiz application is to create a new
Scratch application project. Do so by starting Scratch, thereby automatically
creating a new Scratch application project or, if Scratch is already running, by
clicking on the New button located on the Scratch menu bar.

Step 2: Selecting an Appropriate Stage Background

Once you have created your new Scratch project, it is time to get to work. Let’s
begin by adding an appropriate background to the stage. To do so, click on the
blank stage thumbnail located in the sprite list. Once selected, moditfy its back-
ground by clicking on the Backgrounds tab located at the top of the scripts area.
To add a new background to the application, click on the Import button. When
the Import Background window opens, click on the Indoors folder and then
select the basketball-court thumbnail and click on the OK button.

Since this application only requires one background, you can remove the default
blank background named backgroundl from your project by clicking on its Delete
This Costume button.

Step 3: Adding and Removing Sprites

This application consists of a number of sprites, representing a hostess who is
responsible for administering the quiz, four buttons on which the user must click

Developing the Basketball Quiz Project

when answering quiz questions, and a graphic containing a welcoming text
message. Before adding any sprites, go ahead and remove the cat sprite from the
application, since it will not be needed.

To add the sprite representing the game’s hostess, click on the Choose New
Sprite from File button to open the New Sprite window. Drill down in to the
People folder and then select the gir13-standing sprite and click on the OK
button. Enlarge the sprite and reposition it as demonstrated in Figures 7.13
and 7.14. While you are at it, change the name assigned to the sprite to say
host.

Next, click on the Choose New Sprite from File button and then drill down
into the Things folder and select the button sprite and click on the window’s
OK button. Once the button sprite has been added, select it in the sprites list,
click on the Costumes tab located at the top of the scripts area, and then click
on the Edit button. This will open the sprite in the Paint Editor program.
Click on the Text button located on the Paint Editor’s toolbar and then
specify ComicSans as the font type and 18 as the font size, type an uppercase
letter A onto the middle of the button sprite, and then click on OK. Next,
rename the sprite A.

Using the same series of steps outlined in the previous paragraph, add three
additional instances of the button sprite to the application, naming them B, C,
and D. Once added, align all four of the button sprites along the right-hand side
of the stage, as demonstrated in Figures 7.13 and 7.14. At this point, you only
have one last sprite to add. This sprite will need to be created from scratch. To do
s0, click on the Paint New Sprite button and then after specifying ComicSans as
the font type and 18 as the font size, type Welcome to the NBA trivia quiz! as
demonstrated in Figure 7.15 and click on the OK button.

Once added, reposition this new sprite at the top of the stage, as shown in
Figures 7.13 and 7.14.

Step 4: Adding Variables Required by the Application

In order to execute, this application needs three variables as shown in Figure 7.16.
To add these three variables to the application, click on the Variables button
located at the top of the blocks palette and then click on the Make a Variable
button three times to create three global variables named Answer, C1icked, and
Score.

151

152

Chapter 7 = Storing and Retrieving Data

Paint Ediror

&)= (2)c) (@)= Gaar
E)
d/g&l:lo‘

\| T [#

_ Welcome to the NBA trivia

w qid

[_I]
El[:ll:il.ﬂ
| IJ_I[_]I_E
mm DIIIII
EEEEImER !
HEDEEEEE 1
—

EREECOOE |

[B Set rotation center
Aol @ T e
Figure 7.15

Creating a new sprite needed by the NBA Trivia Quiz.

Make a wariable
Delete a variable

change Answer by B
set Answer to [
Answer

change Clicked by

set Clicked to)

Clicked

change Score by)
set Score to i)

E Score

Figure 7.16
The NBA Trivia Quiz requires the addition of three global variables.

The variable named Answer will be used to keep track of the user’s answers to each
quiz question. The variable named C1icked will be used to control application
execution, making sure that the script used to administer the quiz pauses and
waits each time the user is prompted to answer a new question. The variable
named Score will be used to keep track of the user’s score (grade).

Developing the Basketball Quiz Project

By default, Scratch will display monitors on the stage for all three of these
variables. However, the game only needs to display the Score monitor. Therefore,
you should clear the monitor check boxes for the Answer and C11icked variables.
Also, the monitor for the Score variable needs to be moved to the lower right-
hand corner of the stage.

Step 5: Adding Scripts to Button Sprites
to Collect User Input

The programming logic that controls the overall administration of the quiz will
be added to the host sprite, which is responsible for displaying quiz questions,
collecting user answers, and then grading the results. In order to answer quiz
questions, the user must click on one of the four sprite button (A, B, C, or D)
when prompted by the hostess. Each of these four sprites has a small script
belonging to it, which sets two variables when it is clicked. Below is the script that
is executed when the A sprite is clicked.

set Clicked to ﬂ
set Answer to ﬂ

As you can see, this script begins with a hat block that executes whenever the A
button is clicked. When this happens, the valued assigned to the C11icked variable
is set to 1, and the value assigned to the Answer variable is also set to 1.

The Clicked variable is used in the application to keep track of when the user
answers a question. This variable’s value is set to 1 when the A sprite is clicked,
indicating that the user has submitted an answer. Once the answer has been
evaluated by a script belonging to the host sprite, the value of C1icked is set back
to 0, making the application ready to process a new question. The Answer variable
is used to identify which button has been clicked. Assigning a value of 1 to this
variable indicates that the A sprite has been clicked.

The programming needed by the B sprite is shown next. As you can see, it is
almost identical to the code assigned to the A sprite, with the value assigned to

153

154

Chapter 7 = Storing and Retrieving Data

the C11cked variable being set to 1 when the button is clicked. Note that the value
assigned to the Answer variable is 2, indicating that the second button (the B
sprite) has been clicked.

- ——

- —

]

Ilwhen B dicked-

set Clicked to E§
set Answer to

The code blocks that make up the C sprite scripts are shown next. As you can see,
the third code block is used to identify when it is clicked.

e

I’when L clicked
set Clicked to
set Answer to

As you have probably anticipated, the code blocks that make up the script for the
D sprite, shown next, assign a value of 4 to the Answer variable.

— —

I’when D c'lil:lg:ed_

set Answer to
set Clicked to

Step 6: Automating the Administration of the Quiz

At this point, you should have added scripts to each of the button sprites that
indicate when they have been clicked and uniquely identify which of the four
buttons was selected. Now it is time to create the two scripts belonging to the host
sprite. The first script, shown next, is responsible for starting the application and
getting the application ready to administer the quiz.

Developing the Basketball Quiz Project 155

set Score to [
set Clicked to)

set Answer to [
EEUH Welcorne to the MBA tirivia quiz! B0 secs
EEU Click on me when vou are ready to begin, B secs

As you can see, this script has been set up to execute when the user clicks on the
green flag button. When this happens, the values assigned to all three of the
script’s variables are set to 0 (setting the score to zero, indicating that none of
the buttons have been clicked, and that no answer has been specified). Next, two
looks code block are used to display instructions, welcoming the user and then
instructing her to click on the hostess when ready to begin taking the quiz.

!I-when Host :]]d-(:d 1

!_w;lt secs

EEV On which MBA& team did Michael Jordan play? & Bulls, B: Rockets, Ci Celtics, Dt Mavericks
P e,

iwaﬂ;' until Clicked =

set Clicked to [

say for B secs
|else

say for) secs

| weait W secs
EEVN How rnany minutes make up a2 quarter? Ar g, B 10, <12, Cv 15

i‘iw;i_t until ~ Clicked =

set Clicked to [
—_
lif Answer =@

chénge Score by
say for secs

lelsa

o for @ secs

EEATM In which host city do the wizards play? At WWashington, E: Philadelphia, C: Atlanta, Di Boston
—_——

| wait until

set Clicked to @)

if Answer = (1]

change Score by

Sy for @ secs

|else

‘ asy o Ehuea

156

Chapter 7 = Storing and Retrieving Data

EEVH How many seconds is the MBA shot clock set to¥ A 20, B 24, ©: 30, Dn 35
!\r.rait_ until | Clicked = ()
set Clicked to [

T
[if = Answer =8

change Score by
say for B secs
i

say e for 5805

At Mets, Bt Pistons, C! Celtics, Dt Lakers

change Score by
say for B secs

if score = I
EE Contratulations. you passed! By secs

else
EEVA Sorry, you failed, BTE secs

set Score to [
set Clicked to [
set Answer to [}

Eﬂ;p all

The host sprite’s second script, shown here, is responsible for the overall admin-
istration of the quiz. As you can see, it is pretty big and is made up of many different
types of code blocks, some of which you have not learned about yet. As such, only a
high-level overview of the script will be provided in this chapter. Once you have
read Chapters 9 and 10, you may want to return and review this script again.

This script begins with a hat code block that executes when the user clicks on the
host sprite. Next, the script’s execution is paused for one second, and then a looks
block is used to display a text message, presenting the user with the quiz’s first
question. The next code block, which contains a pair of embedded code blocks,
pauses script execution and waits until the value assigned to the C11icked variable
is set to 1 (which will occur only when the user specifies an answer by clicking on
one of the four button sprites).

Developing the Basketball Quiz Project

The value assigned to Clicked is then reset to 0, making the variable ready
for the next quiz question. Next, a control code block is used to evaluate the
user’s answer to the quiz question. This is accomplished by checking to see
if the player clicked on the A sprite, as indicated by a value of 1 being
assigned to Clicked. If this is the case, the user’s score is increased by 20, and a
looks block is used to display a text message informing the user that her answer
was correct. If this is not the case, the user is notified that the answer provided
was incorrect.

The next four quiz questions are administered using programming logic that is
identical to that used to administer the first question, the only difference being
that a different question is presented, and a different answer is required. Finally,
once the last quiz question has been processed, the script’s execution is paused
for two seconds, after which the user’s grade (the value assigned to Score) is
evaluated to see if it is greater than 60, in which case the hostess announces that
the user has passed the quiz. If this is not the case, the hostess announces that
the user has failed. Either way, a three-second pause ensues, after which the
values assigned to all three variables are reset to their default starting value of 0,
to make the quiz ready for the next person. Finally, one last control block is
executed, ensuring that all scripts within the application terminate their
execution.

Step 7: Saving and Executing Your New Application

At this point, you have all the information needed to create your own copy of
the NBA Trivia Quiz. Assuming that you have been following along and
creating your copy of the application as you made your way through this
chapter, then your application project should look something like the example
shown in Figure 7.17.

If you have not done so, go ahead and save your new application. Once saved,
switch to Presentation mode and start the NBA Trivia Quiz. As you test your new
application, make sure that the feedback being provided by the hostess after each
answer is correct. In addition, keep an eye on the Score monitor and make sure
that the game is correctly tabulating your grade.

157

158 Chapter 7 = Storing and Retrieving Data

Welcome to the NBA irivia

uizl
9 A
2
L A X E XYY C
@ ——— D
score N

Greeting B C

Figure 7.17
The completed application consists of a stage background, six sprites, and six scripts.

Summary

In this chapter you learned how to create variables and use them to store and
retrieve numeric data. This included learning how to create both local and global
variables and how to use them within Scratch projects to control the application
execution. You also learned how to set up and configure variable monitors and to
change variable values using a slider control. This chapter also showed you how
to delete variables when you no longer need them.

CHAPTER 8 -

DoING A LITTLE MATH

Scratch provides robust support for performing mathematical calculations. This
gives you the ability to develop applications that can manipulate numeric data in
a variety of ways. Scratch provides this support through numbers code blocks.
Numbers code blocks are reporter blocks and therefore can only be used in
conjunction with stack code blocks. This chapter will provide a thorough review
of each of these code blocks and will also show you how to create a new Scratch
application, the Number Guessing game.

The major topics covered in this chapter include:

m Learning how to add, subtract, multiply, and divide programmatically
m Learning how to generate random numbers using any range you specify
= Instruction on how to perform different types of numeric comparisons

m Learning how to perform a number of built-in mathematical operations

Addition, Subtraction, Multiplication, and Division

Like all modern programming languages, Scratch provides programmers with
the ability to add, subtract, multiply, and divide numeric data. This capability is
offered through the code blocks shown in Figure 8.1.

159

160

Chapter 8 = Doing a Little Math

Figure 8.1
These code blocks provide Scratch programmers with the ability to perform arithmetic calculations.

The use of these code blocks is quite intuitive, with each code block clearly
identifying its usage. These code blocks can be embedded within any Scratch
code block that accepts numeric input. For example, the following script
demonstrates how to use these code blocks to modify the value assigned to a
variable named Count.

set Count to

set Count to f Coun
set Count to r Coun

set Count to [Coun

P
set Count to [Count |/ @

Here, the script begins by assigning an initial value of 10 to Count. Next, four sets
of code blocks are executed. Each set consists of one stack block and two reporter
blocks. The first set of statements sets the value of Count equal to the value
currently assigned to Count plus 5, making Count equal to 15. The second set of
code blocks sets Count equal to the value currently assigned to Count minus 5,
making Count equal to 10. The third set of code blocks sets Count equal to the
current value of Count times 5, making Count equal to 50. Lastly, the last set of
code blocks changes the value of Count to 10 by dividing its current value by 5.

Understanding the Mathematical Order of Precedence

As is the case with all programming languages, Scratch allows you to string
together different combinations of numbers code blocks in order to create more
complicated numeric calculations. For example, take a look at the following script.

Here, a small script has been created that evaluates a numeric expression and
assigns the result to a variable named Total. This equation was created by em-
bedding a series of numbers code blocks within one another. Specifically, the

Generating a Random Number

CEE (GRE Thire

(21} Second

D
(CHI=) Firse

Figure 8.2
Creating complex formulas by assembling different combinations of code blocks.

equation was created by embedding the code blocks shown in Figure 8.2 into one
another.

As shown in Figure 8.2, the equation was assembled by embedding the division
code block into a variable block. Next, the addition code block was embedded
within the left-hand side of the division code block. Finally, a multiplication code
block and a subtraction code block are embedded within the input fields of the
addition code block.

Like all programming languages, Scratch evaluates the components of mathema-
tical expressions by following a specific order, referred to as the order of precedence.
Specifically, Scratch evaluates an expression using a top-down approach. When
applied to the example shown in Figures 8.2, Scratch evaluates it as follows:

1. First, it calculates the value of the two top code blocks. Therefore, 4 is
multiplied by 5, yielding a value of 20, and 2 is subtracted from 4, yielding
a value of 2. At this stage, the expression has been evaluated as shown
here.

20+2/2

2. Next, the expression located in the second level code bock (the addition
block) is evaluated. Therefore, 20 is added to 2, yielding a value of 22. At this
stage, the expression has been evaluated as shown here.

2212

3. Finally, the lowest level code block is evaluated, dividing 22 by 2 and re-
sulting in a final value of 11.

Generating a Random Number

Some applications, such as computer games, require an element of randomness
or chance. For example, a game that needs to simulate the rolling of dice needs to
be able to create a pair of random numbers in the range of 1 to 6. Scratch provides
the capability through the code block shown in Figure 8.3.

161

162

Chapter 8 = Doing a Little Math

Figure 8.3
By default, this code block is configured to generate a number in the range of 1 to 10.

This code block provides a means of generating random integer (whole) numbers
using any specified range of numbers. The default range is 1 to 10, but you may
change the input fields to suit your needs. If needed, you can generate negative
numbers. In addition to hard coding a numeric range into the control, you can
substitute variable blocks by dragging and dropping them into either or both of
this code block’s input fields.

To develop an understanding of how this code block works, look at the following
example:

Here, a script has been created that begins by assigning a variable named Count a
starting value of 0. Next, the variable’s value is changed by assigning it a ran-
domly selected value in the range of 1 to 5. A loop is then set up to repeat the
execution of two embedded code blocks. The loop is designed to repeat a spe-
cified number of times and is set up by default to execute 10 times. However, by
dragging and dropping an instance of the Count variable block into the loop’s
input field, the number of times that the loop executes is randomly determined,
depending on the randomly assigned value of Count.

Note

Each time the loop executes, it plays an audio file that sounds like a cat meowing. In order to give
the audio file time to finish playing, a control block was added to pause script execution for one
second. To see this script in action, create a new Scratch application and add the script to the
default Cat sprite.

Comparison Operations

In order to work with numbers, you often need to mathematically manipulate
them as demonstrated in the previous section. Doing so will ultimately leave you
with a result. Typically, you will want to do something with this result once it has

Comparison Operations

Figure 8.4
These code blocks provide the ability to compare any two numeric values.

been calculated. For a simple application, all you may need to do is display its
value. However, more often than not, you are going to end up using it to guide
the execution of your application in some manner. For example, suppose you
want to create a number guessing game that automatically generates a random
number and then challenges the player to try to guess it. Once the random
number is generated and stored in a variable, the player needs to be prompted to
try to guess it (perhaps by clicking on one of 10 buttons with numbers printed on
them). Once the player’s guess is captured, the application needs to compare the
player’s guess against the value of the variable that stores the game’s random
number to determine whether the player’s guess is correct. To facilitate this type
of comparison operation, Scratch provides access to the three code blocks shown
in Figure 8.4.

The first and last code blocks shown in Figure 8.4 allow you to compare one value
against a range of values. The first code block checks to see if the numeric value
specified in its first input field is less than the value specified in its second input
field. The third code block does the opposite, checking to see if the numeric value
specified in its first input field is greater than the value specified in its second
input field. The middle code block is used to determine if two values are equal.

To develop a better understanding of how to work with each of these three code
blocks, let’s look at a few examples. In the first example, shown below, a script has
been created that executes whenever the green flag button is clicked. When this
happens, the value Count is set equal to 10. Next, a numbers block is embedded
within a control block to set up a conditional test that evaluates the value
assigned to Count and to execute the code block embedded within the control
block in the event that the tested condition (Count equals 10) is true. Since this is
the case, a text string of Hello! is displayed in a speech bubble.

Note

To prove that the embedded numbers code block is working as it is supposed to, you could change
the value assigned to Count to something other than 10 and run the example again. Since the
value assigned to Count no longer equals 10, the tested condition would evaluate as false, and
the text message would not display.

163

164

Chapter 8 = Doing a Little Math

e

set Count to

say for B secs

In this next example, the numbers code block that tests for greater than conditions
is used. Again, a script has been set up to execute whenever the green flag button is
clicked. The value assigned to Count is then set to 1, and a control block is used
to set up a loop that runs forever (until you provide a means for stopping its
execution). A number of code blocks are embedded within the loop. The first block
plays an audio file, and the second block pauses script execution for one second to
allow Scratch time to finish playing the file. Another control block is then used to
set up a conditional test that evaluates the value assigned to Count to see if it is
greater than 2, and if it is, another control block is used to terminate the script’s
execution. If the value assigned to Count is not greater than 2, then the last code
block located at the bottom of the loop is executed, incrementing the value of
Count by 1. The loop then repeats and executes again.

set Count to §)

play sound

change Count by

The first time the loop runs, the value assigned to Count is 1. The loop must
iterate two times before the value of Count is set to 3, resulting in the termination
of the script’s execution. Because of this, the audio file will play three times.

In this final example, shown next, the numbers code block that tests for less than
conditions is used. Like the last two examples, this script is set up to execute
whenever the green flag button is clicked. When this happens, the value of Count
is set to 1. Next, a loop is set up that repeatedly executes as long as the value of
Count is less than 15. Fach time this test evaluates as true, three embedded code
blocks are executed. The first code block moves the sprite 25 steps. The next code
block increments the value assigned to Count by 1, and the last code block pauses
script execution for one second.

Comparison Operations

The way this script is written, its loop will execute 14 times and will stop
executing when the value of Count finally reaches 15.

Trick

While Scratch only supplies you with three code blocks for performing conditional tests (equality,
greater than, and less than), most programming languages support three additional types of
conditional tests, allowing you to perform the following comparison operations:

m Greater than or equal to
m Less than or equal to

m Not equal to

Although Scratch does not provide equivalent code blocks, you can easily set up equivalent
comparison tests by combining the three code blocks just discussed with Scratch's logical com-
parison code blocks, as shown in Figure 8.5.

The first combination of code blocks shown in Figure 8.5 creates a test that determines if the value
assigned to a variable named Total is less than or equal to 10. This example is made up of five
code blocks—two variable blocks, two numbers code blocks used to perform less than and
equality comparisons, and another numbers block, which is used to tie everything together. The
second combination of code blocks shown in Figure 8.5 is very similar and is designed to create a
test that checks to see if the value assigned to Total is greater than or equal to 5. The last
example is made up of three code blocks and is used to evaluate the values assigned to Total to
determine to see if it is not equal to 3. You will learn more about code blocks that support logical
comparisons in the next section.

Figure 8.5
Creating customized logical comparisons.

165

166

Chapter 8 = Doing a Little Math

Performing Logical Comparisons

In addition to code blocks designed to perform mathematical and comparison
operations, Scratch also provides access to three code blocks that support logical
comparison operations. These code blocks are shown in Figure 8.6.

The first code block is used to test two different sets of values to determine if both
are true. The second code block is used to test two different sets of values to
determine if at least one is true. And the last code block lets you evaluate two
values to determine if the tested condition is false (not true).

To help you better understand how to work with all three of these code blocks,
let’s review a few examples. The first example, shown next, is a script that exe-
cutes whenever the green flag button is clicked. When this occurs, the value
assigned to the variable Count is set to 50. Next, a control code block is used to
analyze the value assigned to Count. If the value of Count is less than 100 and also
greater than 10, then the end statement embedded within the control block is
executed. However, if both tested conditions evaluate as false, the embedded
code block is not executed.

oy,

set Count to

or) secs

Note

Scratch is very flexible in its support for numbers blocks. For example, if you prefer, you could
swap the order in which the two embedded numbers blocks occur (e.g., checking to see that
Count is greater than 10 before checking to make sure that Count is also less than 100), and
the results would be the same.

This next example is very similar to the previous example, except that instead of
ensuring that both tested conditions evaluate as being true, the script has been

Figure 8.6
Using these code blocks, you can perform more complex comparison operations.

Rounding Numbers and Retrieving Remainders

modified so that only one of the tested conditions has to be evaluated as true in
order for the embedded code block to be executed.

Count |= or * Count =G

| say for B secs

This final example shows a script that performs a negative test, checking to see if
two values are not equal instead of checking to see if they are equal. As a result, if
the value assigned to Count is not equal to 50, which it is not, the code block
embedded within the control block is executed.

< Count = ED)

sIay for secs

Rounding Numbers and Retrieving Remainders

The next set of numbers code blocks, shown in Figure 8.7, provides the ability to
retrieve the remainder portion of any division operation and lets you round any
decimal number to the nearest whole number.

The first code block shown in Figure 8.7 returns the remainder portion of a
division operation, also referred to as a modulus, as demonstrated in the following
example, which divides 10 by 3 and then assigns the modulus (a value of 1) to a
variable named Remainder.

R
set Remainder to [fi) mod

Figure 8.7
These code blocks retrieve remainders and round numbers.

167

168

Chapter 8 = Doing a Little Math

The second code block shown in Figure 8.7 returns the rounded value for a
specified numeric value, rounded to the nearest whole number, as demonstrated
in the following examples, which return values of 4 and 5, respectively.

Working with Built-in Mathematical Functions

In addition to all of the mathematical operations that you can put together using
the numbers code blocks previously discussed in this chapter, Scratch provides
one additional multi purpose code block, as shown in Figure 8.8.

This code block is designed to perform any of 12 different mathematical func-
tions, which can be selected from the code block’s drop-down list. The functions
that this code block can perform are outlined in the following list:

m abs. Returns the absolute, non-negative value of a number.
m sqrt. Returns the square root of a number.

m sin. Returns a value representing the sine of an angle.

m cos. Returns a value representing the cosine of an angle.

m tan. Returns a value representing the tangent of an angle.

m asin. Returns the arc sine for the specified numeric value.

m acos. Returns the arc cosine for the specified numeric value.
m atan. Returns the arc tangent for the specific numeric value.

m In. Returns the inverse of the natural exponent of a specified value (i.e., the
opposite of eN).

m log. Returns the natural log of a number.

Figure 8.8
This code block can assist you in setting up extremely complex calculations.

Developing the Number Guessing Game Quiz Project

m e/\. Returns the natural exponent of a specified value.

m 10A. Returns the value of a number raised to the 10th power.

These code blocks can be real time savers when developing applications that
require the use of any of the mathematical functions supported by the code
block, saving you the trouble of implementing the underlying programming
logic yourself to retrieve similar results. As a result, not only will you spend less
time working on the development of your application, but the programming
logic that you have to develop will be simplified and easier to maintain, since this
code block can do most of the heavy lifting for you.

To specify which function you want to work with, all you have to do is select it
from the code block’s drop-down list. For example, the following examples
demonstrate the use of two different functions provided by this code block:

This example consists of two sets of code blocks. The first set of code blocks
returns the absolute value of —4.4, which is 4.4, and assigns that value to a variable
named Result. The second set of blocks returns the square root of 9, which is 3,
and assigns that value to a variable named Result.

Developing the Number Guessing Game Quiz Project

The remainder of this chapter is focused on the development of your next Scratch
application, the Number Guessing game. This application will make use of
numbers code blocks to generate random numbers for the player to guess and to
compare the player’s guesses against the game’s randomly generated number.

In total, the application is made up of a background, 11 sprites, and 12 scripts.
When run, the game will challenge the player to guess a randomly generated
number in the range of 0 to 9 in as few guesses as possible. Figure 8.9 shows an
example of how the game looks when first started.

To enter a guess, the player must click on one of the button sprites located at the
bottom of the stage. The cat provides immediate feedback after each guess, as
demonstrated in Figure 8.10.

169

170

Chapter 8 = Doing a Little Math

1 am thinking of a
number between 0
and 9.

L)
R
0080060000

Figure 8.9
The Number Guessing game is moderated by the Cat sprite.

Figure 8.10
The cat lets the player know when guesses are too high or too low.

L

N

Figure 8.11
The player guessed the secret number in five guesses.

Figure 8.11 shows how the game looks once the player finally manages to guess
the game’s secret random number.

The game automatically generates a new random number at the end of each
game, in order to ready the game to be played again. The development of

Developing the Number Guessing Game Quiz Project

this application project will be created by following a series of steps, as outlined
here:

1. Creating a new Scratch application project.

2. Adding a background to the stage.

3. Adding and removing sprites.

4. Adding variables needed by the application.

5. Adding an audio file to the application.

6. Adding scripts to each button to collect player guesses.

7. Adding the programming logic required to process player guesses.

8. Saving and executing your work.

Step 1: Creating a New Scratch Project

The first step in the development of the Number Guessing game is to create a new
Scratch application project. To do so, start Scratch, automatically creating a new
Scratch project or, if Scratch is already running, click on the New button located
on the Scratch menu bar.

Step 2: Adding a Stage Background

The next step in the development of the Number Guessing game is to add a
background to the stage. To do so, click on the blank stage thumbnail located in
the sprite list and then change its background by clicking on the Backgrounds tab
located at the top of the scripts area. Next, click on the Import button and when
the Import Background window opens, click on the Outdoors folder. Then select
the brick-wal1l thumbnail and click on the OK button. Since the application
only needs one background, remove the default blank background, named
backgroundl, from your project by clicking on the Delete This Costume button.

Step 3: Adding and Removing Sprites

The Number Guessing game is comprised of the default Cat sprite plus 10 button
sprites and a variable monitor, as shown in Figure 8.12.

171

172

Chapter 8 = Doing a Little Math

Figure 8.12
An overview of the different parts of the Number Guessing game.

To add the first of the sprites representing the 10 input buttons, click on the
Choose New Sprite from File button to open the New Sprite window. Drill down
in to the Letters folder and then the Keys folder to select the 0 sprite. Then click
on the OK button. Place the sprite in the lower-left corner of the stage, as shown
in Figure 8.12. Following this same process, add sprites 1 through 9 to the bottom
of the stage as well. At this point, all that is left in the design of the application’s
user interface is the display and repositioning of the monitor, which you will do
in the next step.

Step 4: Adding Variables Required by the Application

In order to execute, the Number Guessing game requires three variables, as
shown in Figure 8.13. To add these variables to the application, click on the

change Guess by
oot Guecs to @
M cuess

change No Of Guesses by

set No Uf Luesses to)

£ ‘Mo Of Guesses

change RandomNo by
sat Randnmio tn @

['RandomNo

Figure 8.13
The Number Guessing game requires three variables.

Developing the Number Guessing Game Quiz Project

Variables button located at the top of the blocks palette and then click on the
Make a Variable button three times to define variables named Guess, No Of
Guesses, and RandomNo.

The variable named Guess will be used to store the most recent guess made by the
player. The variable named No 0f Guesses will be used to keep track of the number
of guesses made by the player during each game. The variable named RandomNo will
be used to store the game’s randomly generated secret number. Once added, clear
the check box controls belonging to the Guess and No 0f Guesses variables to
prevent their monitors from being displayed. Lastly, drag and drop the monitor for
the No Of Guesses variable to the middle right-hand side of the stage.

Step 5: Adding an Audio File to the Application

The Number Guessing game makes use of two audio files that are played as sound
effects when the player makes incorrect and correct guesses. The audio file played
when the player enters a missed guess is the default pop file, which is auto-
matically included as part of each of the button sprites used in the application.
The second audio file is the Fairydust file, which is played whenever the player
manages to correctly guess the mystery number.

To add the Fairydust audio file, select the Cat sprite thumbnail in the sprite list
and then click on the Sounds tab located at the top of the scripts area. Next, click
on the Import button to display the Import Sound window, and then double-
click on the Electronic folder, select the Fairydust file, and click on OK.

Step 6: Adding Scripts to Capture Player Input

The programming logic that drives the Number Guessing application is divided
into a series of scripts belonging to the application’s sprites. Specifically, small
scripts must be added to each of the button sprites to capture and save player
guesses. In addition, two scripts must be added to the Cat sprite. These two
scripts, which are responsible for starting the game and processing player guesses,
will be covered in Step 7.

To begin work on each of the scripts belonging to the button sprites, select the
sprite representing the 0 button and then add the following code blocks to it:

173

174

Chapter 8 = Doing a Little Math

The script begins with a hat block that executes whenever the sprite is clicked
(when the player clicks on it as a guess). When this occurs, the second code block
in the script sends a Player has guessed broadcast message to the other sprites as
a signal that the player has submitted a guess. The Player has guessed must be
typed into the control block exactly as shown. A third code block is then used to
assign a value to the Guess variable, recording the player’s guess. Note that in this
example, setting Guess to 0 indicates that the player has submitted a guess of 0.
The last code block in the script plays the default pop audio file, which lets the
player know that the guess has been processed.

Note

A broadcast message is a message exchanged between sprites that signals when an event of
some type has occurred within an application. Broadcast messages are generated by and received
using various control code blocks, which you will learn all about in Chapter 10, “Changing the Way
Sprites Look and Behave.” For now, all you need to know is that this application uses broadcast
messages in order to coordinate activity and keep track of what is occurring within the game.

The scripts that need to be added to the rest of the button sprites are almost
identical to the script that you just added. The only difference is that you need to
modify the value that is set in the third code block to properly reflect which
button sprite each script belongs to. The easiest way to add these scripts to the
other nine button sprites is to drag and drop an instance of the first script onto
each of the nine other sprites and then to select each sprite, one at a time, and
modify the value of the third code block accordingly.

Step 7: Processing Player Guesses

Once scripts have been added to all 10 of the button sprites, it is time to create the
two scripts belonging to the Cat sprite. The first of these scripts is shown next and
is responsible for initializing the game and getting it ready to play.

Anmi irle a
RSN 1 = thinking e EN for B secs
EETN Chick on one of the numbers below to make a guess, FUTE 2 FE=0

This script is executed when the player clicks on the green flag button. It begins
by assigning an initial value of 0 to No 0f Guesses and then assigns a randomly
generated value in the range of 0 to 9 to a variable named RandomNo. Lastly, it

Developing the Number Guessing Game Quiz Project

displays a pair of messages that inform the player that the cat is thinking of a
number and challenges the player to try to guess it.

The second and final script to be added to the Cat sprite is shown next. This script
is automatically executed whenever the Player has guessed broadcast message is
received. This happens when the player clicks on one of the 10 button sprites.
First, the script modifies the value assigned to No 0f Guesses by increasing it by 1.
This allows the application to keep track of the number of guesses that the player
has made in the current game.

sel Randumbtio Lo pick randum @ w8

PN 1 am thinking of 3 new number between O and 9. FFTH o [P

EE Click on one of the numbers below to make a guess, ETTAN 2 IEECES
—_—

for @ secs
=

|

L
y

The rest of the script is made up of code blocks embedded within a control block.
The control block begins by evaluating the value assigned to the Guess variable to
see if it is equal to the value assigned to the RandomNo variable. If this is the case, a
series of code blocks embedded within the upper portion of the control block are
executed. If this is not the case, code blocks embedded in the bottom of the
control block are executed.

The code statements located in the upper half of the control block, which execute
when the player enters a correct guess, perform the following actions:

m Play the Fairydust audio file that was added to the Cat sprite back in Step 5
m Notify the player that the game has been won

m Pause script execution for one second

m Reset the value of No 0f Guesses to 0

175

176

Chapter 8 = Doing a Little Math

m Select a new random number for the game

m Challenge the player to play again

If, on the other hand, the player enters an incorrect guess, the code blocks
embedded at the bottom of the script are executed. These code blocks are
organized into two separate control blocks. The first control block evaluates the
value assigned to Guess to see if it is less than RandomNo, and if it is, a message is
displayed that informs the player that the guess was too low. The second control
block determines if the value assigned to Guess is less than RandomNo, and if it is, a
message is displayed that informs the player that the guess was too high.

Step 8: Saving and Executing Your New Scratch
Application

At this point, you now have all the information that you need to create your own
copy of the Number Guessing game. If you have not already done so, save your
new Scratch project. Once saved, switch to Presentation mode, run the game, and
put it through its paces. Remember to begin game play by clicking on the green
flag button and following the instructions provided by the Cat sprite.

Summary

This chapter provided a thorough overview of Scratch numbers code blocks and
demonstrated their usage. This included learning how to perform mathematical
calculations and generate random numbers, as well as how to perform numeric
comparisons. You learned how to perform different types of logical comparisons
and to combine code blocks that execute logical and comparison operations to
carry out advanced comparison operations. On top of all this, you learned how to
perform a host of advanced mathematical operations like rounding numbers and
executing different arithmetic functions. You also learned how to create another
Scratch application, the Number Guessing game.

CHAPTER 9 -

CONDITIONAL AND
REPETITIVE LOGIC

To create a script, you must know how to work with control code blocks. All of
Scratch’s hat blocks are control blocks. Control blocks also provide the capability
to implement loops and conditional programming logic, which are the building
blocks of advanced and complex applications. Control blocks can pause and halt
script execution. Control blocks also provide the capability to send and receive
broadcast messages, providing you with a means of coordinating application
activity.

The major topics covered in this chapter include:
m How to use control blocks to initiate script execution

m How to pause and halt script execution

m How to set up different types of loops and implement conditional
programming logic

m How to send and receive broadcast messages between sprites

Introducing Scratch Control Blocks

Scratch control blocks provide programmers with many different capabilities, all
of which are geared around controlling script execution. Without control blocks,
scripts would not be able to execute. Nor would they be able to pause, loop, or

177

178

Chapter 9 = Conditional and Repetitive Logic

execute conditional logic when evaluating data. Through control blocks, Scratch
can perform all of the actions listed here:

m Event programming

m Pause script execution

m Create loops

m Send and receive broadcast messages
m Execute conditional logic

= Halt script execution

You have already seen control blocks in action in every script presented in the first
eight chapters of this book. Now it is time to learn more about these powerful code
blocks and the programming features they provide.

Event Programming

Control blocks can initiate script execution, which is critical to the execution of
Scratch applications. This is accomplished with hat blocks, including those
shown in Figure 9.1.

As you have seen in many examples in this book, the first code block shown in
Figure 9.1 initiates a script’s execution whenever the green flag button is clicked,
and it is the most common means of starting an application’s execution. For
example, if you were to add the following script to any sprite or background in a
Scratch application, it would automatically play a specified audio file (provided
that file has been imported).

(o £ T
play zound mesis |

Figure 9.1
Hat blocks automate the execution of scripts.

Pausing Script Execution

The second code block shown in Figure 9.1 initiates a script’s execution whenever
a specified keyboard key is pressed. The key that is used as the trigger is selected
by clicking on the code block’s drop-down list and making a selection of one of
the following keystrokes:

m Up, down, right, and left arrow keys
m The spacebar

ma-z

m0-9

For example, the following script demonstrates how to move a sprite by 50 steps
whenever the keyboard’s spacebar is pressed:

mova B staps

The third code block shown in Figure 9.1 initiates script execution whenever the
sprite to which it belongs is clicked. The following script demonstrates how to use
this code block to automate the display of text in a speech bubble whenever
the sprite to which it has been added is clicked:

<ay I for @ sors

Note

Scratch provides a fourth hat control block, which is covered later in this chapter. This code block
is used to initiate script execution when broadcast messages are received.

Pausing Script Execution

Once started, scripts execute without pause until they are done. However,
sometimes you need to temporarily pause a script’s execution for a specified
period. The code block that you need to use in this type of situation is shown in
Figure 9.2.

Figure 9.2
Using this control block, you can pause script execution for as long as necessary.

179

180

Chapter 9 = Conditional and Repetitive Logic

This code block adds brief pauses to your Scratch applications. For example, you
might want to pause a script’s execution for a second or two after the player
scores a point. This brief pause would allow the player a moment to review the
score and to get ready for the next point. Another reason for pausing a script’s
execution is to help manage the playback of audio files, as demonstrated in the
following example:

play sound meow

play sound meow

Here, you see a script that plays two audio files. In order to allow the first audio
file time to play back, the script is paused for two seconds, after which execution
resumes, and the second audio file is played. If you were to remove the control
block that pauses the script from this example, both audio files would play
simultaneously, interfering with one another.

Tip

It you want to continuously play an audio file without pausing a script's execution, consider
putting the code statements that are responsible for audio file playback in their own script and
adding that script to the stage.

Note

The control block shown in Figure 9.3 also pauses script execution, waiting until a specified
condition becomes true. This code block is covered a little later in this chapter, when conditional
programming logic is discussed.

Figure 9.3
This code block provides another way of conditionally pausing script execution.

Executing Loops

Most computer applications and games are interactive, meaning that they
respond to user input and react accordingly. In doing so, it is often necessary to
execute collections of code statements repeatedly. For example, an arcade-style
computer game might require the continuous playback of background music
and sound effects. This would require the repeated execution of programming

Executing Loops

logic required to manage sound playback for as long as the game was played. To
manage this type of interaction, you need to add loops to your applications. In
Scratch, a loop is a collection of one or more code blocks embedded with a
control block that are repeatedly executed.

Without loops, programmers would have to create extremely large scripts filled
with repeated series of duplicate statements to perform certain tasks. For ex-
ample, to create a Scratch application that bounces the Cat sprite up and down
four times without a loop, would you have to add a script like the one shown next
to the sprite.

go to x: [y:

glide secs to x: [v: @
glide secs to x: [y:
glide secs to x: [v: @

glide 8 secs to x: [@ y:
glide secs to x: [v: @
glide secs to x: [y:
glide secs to x: [v: @
glide secs to x: [y:

The script begins by positioning the sprite at the bottom center of the stage. Two
sets of motion blocks are needed to bounce the sprite one time. So to bounce the
sprite up and down four times, these two code block have to be repeated four
times. Suppose you wanted to make the sprite bounce 10, 100, or 1,000 times.
Clearly, this is a situation where a loop is needed.

Scratch supplies access to two code blocks that you can use to set up loops, as
shown in Figure 9.4.

Note

Scratch also supplies two additional control blocks that offer the capability to conditionally
execute loops. These two code blocks will be discussed a little later in this chapter when
conditional logic is covered.

Figure 9.4
Using these code blocks, you can create loops that repeat the execution of any code blocks you
embedded within them.

181

182

Chapter 9 = Conditional and Repetitive Logic

The first of the two code blocks shown in Figure 9.4 can be set up as a loop that
executes forever, which really means that the loop repeatedly executes until the
script in which it resides is halted. For example, the following script uses this code
block to set up a loop that bounces a sprite over and over again, until the Stop
Everything button is clicked:

.3

go to x: [y: GED

glide secs to x: [v: (@
glide sacs to x: [v:

The first statement moves the sprite to the bottom center of the stage. The two
statements within the loop bounce the sprite, in a gliding motion, up and down
from the bottom to the middle of the stage.

Note

In Scratch, there are two ways to force an immediate termination of a script. First, you can halt a
script by stopping the execution of the application by clicking on the red Stop Everything button.
However, this option can often be a bit of overkill. As a less extreme option, Scratch offers a
control block that allows you to halt an individual script’s execution. There is also a control block
that you can use to halt the execution of all scripts within an application. Both of these control
blocks are reviewed a little later in this chapter.

Rather than repeating the execution of a loop forever, you can use the second
code block shown in Figure 9.4 to set up a loop that executes a predetermined
number of times. For example, the following script demonstrates how to bounce
a sprite up and down a total of 10 times.

go to x: @)

glide secs to x: [@ v: (@
glide secs to x: [v

Obviously, the fewer code blocks you use when developing scripts, the more
streamlined and easier to support your applications will be. Loops make pro-
gramming a lot easier and provide a tool that you can use to repeat the execution
of any number of code statements with as little fuss as possible.

Sending and Receiving Broadcasts

Sending and Receiving Broadcasts

Because Scratch applications can be made up of many different sprites, each of
which may consist of many different scripts, coordinating the activity of all the
different parts of the application can be challenging. By providing access to the
three code blocks shown in Figure 9.5, Scratch offers the ability to send and
receive broadcast messages as a means of coordinating script execution.

Using the first two code blocks shown in Figure 9.5, you can pass messages to any
script within an application that begins with the hat code block shown at the
bottom of Figure 9.5. For example, the following script demonstrates how to
send a broadcast message of jump to all sprites within the application:

To specify the message sent by the control code block, all you have to do is click on
the block’s drop-down list and then either select a previously typed message or
create a new message by clicking on New and then typing in the message. This
particular code block sends its message and then allows the script in which it is
embedded to continue executing. Alternatively, the following script not only sends
a broadcast message but also waits until every script in the application, which has
been set up to execute when the message is sent, has finished executing:

Using the hat block, you can set up a script to execute whenever a specified
message is received.

Jump.
gu to x @ y:

ylide B secs o x: B v D
ylide {5 secs o =: @) y: EED

Figure 9.5
Broadcast messages provide the capability for one script to notify other scripts that an event has occurred.

183

184

Chapter 9 = Conditional and Repetitive Logic

Note

Using the three previous scripts, you could create a new application made up of two button
controls and the default Cat sprite. By assigning the first script to the first button sprite, the
second script to the second button sprite, and the third script to the Cat sprite, you can make the
Cat sprite jump up and down on the stage any time you click on one of the button sprites.

Conditional Programming Logic

The next set of control code blocks provided by Scratch is shown in Figure 9.6. These
code blocks allow you to apply conditional programming logic to your scripts.

Using these code blocks, you can analyze data within your applications and make
decisions based on this analysis, resulting in the conditional execution of collec-
tions of code blocks. The key concept to understand when working with these types
of code blocks is that conditional logic involves an evaluation as to whether a
condition is true or not. If the condition being analyzed is true, then the code
blocks embedded within the control block are executed. However, if the condition
being analyzed proves false, the embedded code blocks are not executed.

The following script demonstrates how to use the first code block shown in
Figure 9.6 to set up a loop in which execution is controlled by a conditional test.
Each time the loop repeats, it checks the value assigned to a variable named
Counter to see if it is equal to 0. If it is, the loop executes, plays an audio file,
pauses for two seconds, and then checks to see if it should execute again.

play cound me

Figure 9.6
These five code blocks let you conditionally execute collections of code blocks.

Conditional Programming Logic

This next example demonstrates how to conditionally execute the playback of an
audio file. When executed, this script examines the value assigned to a variable
named Counter to see if it is equal to 0, and if it is, the audio file is played.

Sometimes you may want to execute either of two sets of code blocks based on
the results of a tested condition. This can be accomplished using the third code
block shown in Figure 9.6.

Here, a conditional test is performed that checks to see if the direction that a
sprite is facing is 90 degrees. If it is, the direction that the sprite is pointing is
reversed. If you run the script repeatedly, the direction that the sprite is pointing
is continuously reversed.

This next example demonstrates how to use a control block that pauses script
execution and waits for a specified condition to become true.

play sound

Here, a script has been set up that, once run, checks on the value assigned to
Counter to see if it is greater than 5. If it is, an audio file is played. If Counter is not
greater than 5, then the script pauses its execution, waiting until the value of
Counter exceeds 5 before finishing its execution.

Finally, the last example demonstrates how to work with the last of the control
blocks shown in Figure 9.6. Here, a loop is set up to execute repeatedly until the
value assigned to Counter is set equal to 3, at which time the loops will stop
running. Each time the loop runs, it moves, or bounces, its associated sprite up
and down on the stage.

185

186

Chapter 9 = Conditional and Repetitive Logic

B} cocs to »: (@ yv: EED

Nesting Conditional Control Code Blocks

As powerful as the control blocks are that facilitate conditional execution, they
are limited to analyzing a single condition at a time. To develop more complex
programming logic, you can embed one control block within another, as
demonstrated in the following example:

Here, one control block has been embedded within another control block to
further analyze the value assigned to Counter. If necessary, you can embed
control blocks many levels deep. However, the deeper you go, the more difficult
your scripts will be to understand and maintain.

Preventing Endless Loops

Loops are extremely powerful tools, providing the capability to perform repe-
titive tasks with ease. However, if you are not careful when setting them up, you
can accidentally set up an endless loop. An endless loop is a loop that, because of a
logical error on the programmer’s part, never ends. For example, you might want
to set up a loop that plays an audio file five times. But suppose when setting up
the loop you made a mistake that prevented the loop from ever terminating, as
shown here.

Here, the intention was to set up a loop that would execute five times. The
loop has been set up to execute for as long as the value assigned to Counter is

Terminating Script Execution

less than 5. Counter is assigned an initial value of 1, and its value is supposed to be
incremented by 1 each time the loop executes. However, instead of incrementing
the value of Counter by 1 at the end of the loop, the value of Counter is decremented
by a value of —1. As a result, the loop never terminates, forever repeating the
playback of the audio file. To prevent endless loops from occurring, you need to
take extra care when setting up loops and test your scripts thoroughly when
developing your applications.

Terminating Script Execution

The last two control blocks offered by Scratch are shown in Figure 9.7. These
code blocks programmatically halt script execution within your Scratch
applications.

Using the first of these two control blocks, you can halt the execution of the
scripts in which the code block is placed, as demonstrated in the following
example:

play sound pop |

Here, the script checks to see if the value assigned to a variable named Counter is
equal to 3, and if it is, an audio file is played. If Counter is not equal to 3, then a
different audio file is played, and the script’s execution is halted. Halting a script
this way forces its immediate termination, even if the script contains additional
code blocks that have not been executed.

Using the second control block shown in Figure 9.7, you can not only halt the
execution of the current script, but you can also halt the execution of every
script in the application. For example, the following script executes a loop three
times and then halts the execution of every script in the application in which it
resides.

Figure 9.7
Using these code blocks, you can halt the execution of any or all scripts within an application.

187

188

Chapter 9 = Conditional and Repetitive Logic

glide G5 sccs to x @ v B
glide [sers to v @) y:
change Counter by 0

Developing the Ball Chase Game

The rest of this chapter is dedicated to teaching you how to create your next
Scratch application, the Ball Chase game. This application makes heavy use of
different control blocks to control the movement of the ball and the cat that
chases it around the stage. In total, the application is made up of four sprites and
nine scripts. The object of the game is to try to prevent the cat from catching the
ball as it chases it around the stage. If you can keep the ball out of the cat’s reach
for 30 seconds, you win. Figure 9.8 shows how the game looks when first started.

To play, all you have to do is move the mouse-pointer around the stage, and
the ball will automatically follow. If the cat manages to catch the ball before
30 seconds is up, the game ends, as demonstrated in Figure 9.9.

Figure 9.8
The object of the game is to prevent the cat from catching the ball.

Game Over

You lose!

Figure 9.9
The game ends if the cat catches the ball.

Developing the Ball Chase Game

Figure 9.10
The player wins if the ball can be kept away from the cat for 30 seconds.

Figure 9.10 shows how the game looks when the player successfully manages to
evade the cat for the entire 30 seconds.

The development of this application will be accomplished by following a series of
steps, as outlined here:

1. Creating a new Scratch project.

2. Adding and removing sprites.

3. Adding variables needed by the application.

4. Adding an audio file to the application.

5. Adding a script to control ball movement.

6. Adding scripts that display game over messages.

7. Adding the scripts required to control and coordinate game play.

8. Saving and executing your work.

Step 1: Creating a New Scratch Project

The first step in the development of the Ball Chase game is to create a new Scratch
project. To do so, start Scratch, automatically creating a new Scratch project, or if
Scratch is already running, click on the New button located on the Scratch menu
bar.

Step 2: Adding and Removing Sprites

The Ball Chase game is made up of the default Cat sprite plus three other sprites
and a variable monitor, as shown in Figure 9.11.

189

190

Chapter 9 = Conditional and Repetitive Logic

Figure 9.11
An overview of the different parts of the Ball Chase game.

Since the default Cat sprite is not needed in this application, go ahead and
remove it. In its place you need to add a different sprite, representing a top-down
view of a different Cat sprite. To add this sprite, click on the Choose New Sprite
from File button. When the New Sprite window opens, drill down in to the
Animals folder and then select the cat2 sprite and click on the OK button. By
default, the sprite is placed in the middle of the stage and faces in a 90-degree
direction. Leave this sprite in its default location in the middle of the stage,
change its direction to 0, and then change its assigned name to Cat. Next, add the
Bal1 sprite by clicking on the Choose New Sprite from File button, drilling down
in to the Things folder, selecting the beachballl sprite, and then clicking on the
OK button. Place the Bal1 sprite on the top center of the stage and change its
assigned named to Ball.

To add the application’s remaining two sprites, which will be nothing more than
text strings saved as sprites, you must create them, which you can do using
Scratch’s built-in Paint Editor program. Both of these sprites consist of text
messages. For the first of these two sprites, open the Paint Editor by clicking on
the Paint New Sprite button. When the Paint Editor program opens, specify a
font type of ComicSans, a font color of red, and a font size of 18. Type Game Over,
press the Enter key, type You lose! into the Paint Editor, and then click on the
OK button. Using this same process, create a second sprite that says Game Over!
You win. Change the names assigned to these two sprites to LosingMsg and
WinningMsg, respectively.

Developing the Ball Chase Game

[change Elapscd Time by @

set Elapsed Time to @

Figure 9.12
The Ball Chase game requires one variable.

Step 3: Adding Variables Required by the Application

To execute, the Ball Chase game requires one variable as shown in Figure 9.12. To
add this variable to the application, click on the Variables button located at the
top of the blocks palette and then click on the Make a Variable button to define a
variable named Elapsed Time.

This variable will be used to display the amount of time remaining in the game.
Make sure that you leave the check box for this variable selected and that you
reposition the variable’s corresponding monitor to the upper right-hand corner
of the stage.

Step 4: Adding an Audio File to the Application

The Ball Chase game makes use of one sound effect, which simulates the meowing
of the cat as its chases the ball around the stage. To add this audio file, select the Cat
sprite thumbnail in the sprite list and then click on the Sounds tab located at the
top of the scripts area. Next, click on the Import button to display the Import
Sound window, double-click on the Animal folder, select the Meow audio file, and
finally click on the OK button to finish adding the audio file to the sprite.

Step 5: Adding a Script to Control Ball Movement

The objective of the game is to try to keep the ball out of the reach of the cat for
30 seconds. The following script, which should be added to the Bal1 sprite, is
responsible for controlling the movement of the ball on the stage.

oy

go to x () y:
go back layers

go to mouse-pointer

This script begins with a hat block. Next, a motion block is used to position the
ball in the upper middle portion of the stage. A looks block is then used to move

191

192

Chapter 9 = Conditional and Repetitive Logic

the sprite back one layer, ensuring that if the Ball sprite encounters the Cat
sprite, the Ba11 sprite will be displayed under the Cat sprite instead of on top of it.
(You will learn about looks blocks in Chapter 10, “Changing the Way Sprites
Look and Behave.”)

The rest of the script consists of a loop that repeatedly executes another motion
block. The motion block is responsible for moving the Bal1l sprite around the
stage to where the mouse-pointer is.

Step 6: Adding Scripts That Display Game Over Messages

You will add the script that is responsible for making the cat chase the ball
around the stage in the next section. Before doing so, add the following pair of
scripts to the WinningMsg sprite. These scripts are responsible for displaying and
hiding the game’s winning message.

go to front

show

The first of the two scripts shown above is responsible for hiding the display of
the sprite to which it has been added. The second script, on the other hand, is
responsible for displaying the sprite whenever a broadcast message of You win is
received. Note that this script includes a looks block that pushes the sprite to the
front of any other sprites that it may happen to overlap. This ensures that the
message is completely visible once displayed.

Once you have created and added these two scripts to the WinningMsg sprite, drag
and drop both of them onto the LosingMsg sprite and then edit the second script
so that it executes whenever a broadcast message of You lose is received.

Step 7: Adding Scripts Needed to Control

and Coordinate Game Play

To wrap up your work on the Ball Chase game, you need to add four scripts to
the Cat sprite. The first of these scripts is shown next and is responsible for
ensuring the cat chases the ball around the stage.

Developing the Ball Chase Game

go to x: [yv: [

point in direction 0K3

point towards Bal

move @3 steps

This script begins by moving the Cat sprite to the center of the stage and
pointing it in its default upward direction. Next, it pauses for one second
and then enters into a loop, which repeatedly executes the embedded code
blocks. The first of these three code blocks points the cat sprite towards the Ba11
sprite. The second code block pauses the loop’s execution for .15 seconds,
after which the third block moves the Cat sprite 66 steps in the direction of the
Ball sprite.

Note

The reason for imposing the .15 second delay in the script’s loop is to slow down things
enough to give the player a chance to keep the ball from the cat. If the little extra delay were
removed from the loop, the speed at which the cat moves would easily overcome even the
fastest player.

The second of the four scripts to be added to the Cat sprite is shown next. This
script is set to execute when the player starts the game by clicking on the green
flag button. The script begins by setting the value at which the audio is played
to 50% of the level of the computer’s current sound level. The rest of the script is
controlled by a loop that repeatedly runs two embedded code blocks. The first
code block pauses script execution for five seconds. The second code block plays
the Meow audio file. The result is that the cat will meow every five seconds as it
chases the ball around the stage.

set volume to B 20

play sound Meow

The third script to be added to the Cat sprite is responsible for halting the
execution of all scripts in the application in the event that the cat manages to
touch the sprite during game play. The code blocks that make up this script are
shown here:

193

194

Chapter 9 = Conditional and Repetitive Logic

This script is executed when the player starts the game by clicking on the green
flag button. The script’s overall execution is controlled by a loop. Within the
loop, a conditional test is performed that checks to see if the Cat sprite has made
contact with the Ba11 sprite. If this is the case, a broadcast message of You Tose is
sent. Once this message has been received and processed by the other scripts in
the application, the last code block in the loop is executed, halting all script
execution.

The last script to be added to the Cat sprite is shown next. This script is res-
ponsible for keeping track of time as the application executes and for halting
game play after 30 seconds, should the player manage to keep the cat at bay for
that long.

raset timer

change Elapsed Time by timer

Clapsed Time to timer

When started, this script begins by resetting Scratch’s internal timer and then
assigning the current value of the timer (0.0) to a variable named Elapsed Time.
The rest of the script is controlled by a loop. Each time the loop executes, it
updates the value assigned to the Elapsed Time variable to reflect the timer’s
current value. Next, a check is made to see if the timer’s value has exceeded
30 seconds, and if it has, a broadcast message of You win is sent. Once processed
by the other scripts in the application, the execution of all scripts in the appli-
cation is halted. If, on the other hand, the timer’s value is less than 30 seconds, the
loop simply executes again. Accordingly, if the cat does not manage to catch
the ball within 30 seconds, thus ending the game, the fourth script will end the
game and declare the player to be the winner.

Summary

Step 8: Saving and Executing Your Scratch Project

All right! Assuming you have followed along closely with each of the steps
presented in this chapter, your copy of the Ball Chase game should be ready for
testing. If you have not done so yet, save your new Scratch project. Once saved,
switch over to Presentation mode and execute the game. Remember that game
play begins when you click on the green flag button and that your object is to
keep the ball out of the cat’s reach for 30 seconds.

Summary

This chapter provided an overview of all of Scratch’s control blocks. You learned
how to use Scratch hat blocks and to pause and halt script execution. This
chapter also showed you how to set up different types of loops and to work with
all five of Scratch’s control blocks that support conditional programming logic.
You also learned how to control and coordinate script activity by sending and
receiving broadcast messages between sprites.

195

This page intentionally left blank

cHAPTER 10 -

CHANGING THE WAY SPRITES
Look AND BEHAVE

By its very nature, Scratch lends itself to the development of graphical applica-
tions that involve the manipulation of sprites. This includes taking actions that
affect the appearance and behavior of both sprites and the stage background.
Sprite and background appearance and behavior can be controlled using looks
code blocks. Looks code blocks can be used to affect sprite appearance through
the application of special effects, to make sprites visible or invisible as applica-
tions execute, and even to change sprite costumes and stage backgrounds. This
chapter offers an in-depth overview of all of Scratch’s looks code blocks and
will guide you through the creation of your next Scratch project, the Crazy Eight
Ball game.

The major topics covered in this chapter include:

m Learning how to programmatically change a sprite’s costume
m Learning how to display text in speech and thought bubbles

Discovering how to apply a range of special graphical effects to sprites

Learning how to change a sprite’s size

Making sprites appear and disappear during application execution

Specifying how sprites that overlap one another should be displayed

197

198

Chapter 10 = Changing the Way Sprites Look and Behave

Changing Sprite Costumes and Backgrounds

Depending on whether you have selected a sprite’s thumbnail or the stage
thumbnail in the sprite list, several different code blocks are displayed when you
look at Scratch’s looks blocks in the blocks palette. For starters, the first three
code blocks are different, as shown in Figure 10.1.

Both sets of code blocks have similar tasks, with one set focusing on working with
sprite costumes while the other set is focused on working with the stage’s
background.

Changing Sprite Costumes

Every sprite that is added to a Scratch application is capable of changing its
appearance by changing its costume. Sprites can be assigned any number of
costumes and switch between them at any time. To add a costume to a sprite, all
you have to do is select the sprite’s thumbnail, click on the Costumes tab located
at the top of the scripts area, and then click on the Import button. This opens a
window that allows you to locate and select a graphic file to be used as a new
costume for the sprite.

Every costume that is added to a sprite is automatically assigned a number and a
name (based on the graphic’s filename). The first costume in the costume list
represents the sprite when the application is started. However, using drag and
drop, you can rearrange the order in which costumes are listed. In addition, using
the first looks block shown in Figure 10.1, you can programmatically replace a
sprite’s current costume by specifying the name of a different costume. For
example, the following script demonstrates how to use this code block in a loop
to repeatedly change a sprite’s costume 10 times at half-second intervals. The
result is the generation of animation that makes it look like the bat is flying.

switch to background h-‘:clf:-;_n'nuru:li switch to costume costumeZ |

next background next costume

background # costume #

Figure 10.1
The code blocks on the left are displayed when you are working with a sprite, and the code blocks on
the right are displayed when you are working with the stage.

Changing Sprite Costumes and Backgrounds

itch to costume batlz |

To change the costume of the sprite to which this script is added, select the
costume’s name from the looks block’s drop-down list. The block’s drop-down
list is automatically populated with a list of all of the costumes that have been
added to the sprite. The costumes listed in the previous example refer to two
costumes representing different views of a bat, as shown in Figure 10.2, and are
supplied as part of a collection of graphic files that ships with Scratch.

Costume numbers are automatically assigned by Scratch as you import new
costumes into a sprite. The first costume assigned to a sprite is given a costume
number of 1. Each successive costume is assigned a higher number, as demon-
strated in Figure 10.3.

Using the second looks block shown on the left-hand side of Figure 10.1, you can
change a sprite’s costume to the next costume in the costume list. For example,

the following script automatically changes a sprite’s costume whenever the sprite
is clicked.

When executed, the script changes the sprite’s costume to the next costume in
the list. By clicking on the sprite repeatedly, you continue changing the sprite’s

bati-b

Figure 10.2
Bat costumes.

199

200

Chapter 10 = Changing the Way Sprites Look and Behave

Costume # 1

Costume # 2

Costume # 3

Figure 10.3
Three costumes have been added to a sprite, each of which depicts a slightly different version of a blue
dog. These costumes are numbered 1, 2, and 3 and are named dog2-a, dog2-b, and dog2-c, respectively.

Figure 10.4
Scratch loops back to the beginning of the sprite’s costume list as necessary to fulfill additional
costume switches.

costume. Once the last costume in the costume list has been displayed, Scratch will go
back to the top of the costume list and start over, as depicted in Figure 10.4.

The last looks block shown at bottom left of Figure 10.1 can be used to display a
monitor that presents a sprite costume number on the stage. Alternatively, you
can use this code block as input to any code block that accepts numeric input.

Changing a Stage’s Background Costumes

The looks code blocks on the right-hand side of Figure 10.1 are used to change
the stage’s background and work identically to their counterparts that deal with

Making Sprites Talk and Think

costumes. For example, the following script demonstrates how to randomly set
the stage’s background to one of three options.

Note that in addition to changing the stage’s background twice, this example also
plays one of three audio files, depending on which of the three backgrounds is
randomly selected.

Making Sprites Talk and Think

The following set of looks code blocks, shown in Figure 10.5, is applicable only
to sprites and can used to display text in speech and thought bubbles, making a
sprite look like it is talking or thinking.

Figure 10.6 provides examples of how speech and thought bubbles look.

The first two code blocks are used to display text in speech bubbles. The dif-
ference between these two code blocks is that the first code block displays its text

say for secs

EET Hello!

think for @ secs

think
Figure 10.5
Using these code blocks, you can display text in both speech and thought bubbles.
Speech Bubble Thought Bubble
mm’gh 1 think this book
Teens! rocks!

=

Figure 10.6
Speech and thought bubbles resemble callouts used to display captions in cartoons found in many
popular newspaper comic strips.

201

202

Chapter 10 = Changing the Way Sprites Look and Behave

for a specified number of seconds, and the second code block permanently
displays its text (until the text is overridden by another speech or thought
bubble). For example, the following script could be used to display the text
Hello! for two seconds in a speech bubble.

Tip

Any text displayed using the second and fourth code blocks shown in Figure 10.5 do not
automatically go away. However, you can clear out the text displayed in a speech or thought
bubble by executing a speech or thought code block with no text typed in it.

(o 7 i
cay FEE] for © cace

Similarly, the following script demonstrates how to display a text message of
Hmm. .. in a thought bubble.

b et

chiet (I

Applying Special Effects to Costumes and Backgrounds

The next three looks code blocks, shown in Figure 10.7, apply to both sprites and
the stage and can be used to apply and clear different graphical special effects.

The first and second code blocks shown in Figure 10.7 select and then apply one
of the following special effects to a sprite’s costume or to the stage’s background.

m Color. Modifies the costume or background’s color.
m Fisheye. Magnifies a portion of a costume or background.

s Whirl. Twists and distorts a portion of a costume or background.

olor | effect by

|effect to @

clear graphic effects

Figure 10.7
These code blocks allow you to set and clear different graphics effects on sprites.

Applying Special Effects to Costumes and Backgrounds

m Pixelate. Displays a sprite or background at a lower resolution than the
resolution at which the image was created.

m Mosaic. Creates an image made up of repeated instances of a sprite or
background.

m Brightness. Modifies an image by increasing or decreasing its intensity of
light.

m Ghost. Fades the appearance of a costume or background to make it look
transparent.

An example of each of these graphic effects on a sprite is shown in Figure 10.8.

To develop a better understanding of how to work with these two code blocks,
let’s look at a couple of examples. In this first example, a sprite’s appearance is
changed by executing a loop four times. Each time the loop executes, it applies
the ghost effect to the sprite to which it belongs.

changa ghost | affact by

Note that the value specified in the input field for the code block in the previous
script is 25, which represents a percentage value. As such, for each of the four
times that the loop repeats, the sprite fades away until at the end of the last
execution of the loop, the sprite completely disappears.

o ;
3 — g
!] £

Figure 10.8
A demonstration of how special effects affect a sprite.

203

204

Chapter 10 = Changing the Way Sprites Look and Behave

set whrl | ettect to @

effoct to

set whirl |effect to

set whrl | ettect to
sot whil | offect to

set whirl effect to @)

This second example applies the whirl special effect to its sprite. Specifically, it
begins by clearing any previous whirl effect that may have been applied to the
sprite. Then, over a period of four seconds, it slowly modifies the appearance of
the sprite by applying an increased application of the whirl effect. A one-second
pause then ensues, and the sprite is returned to its original state.

The last looks code block restores a costume or background back to its original
appearance regardless of how many different graphical effects may have been
applied to it. For example, the following statement demonstrates how to restore a
costume or background’s appearance when the green flag button is pressed.

Changing a Sprite’s Size
The next three looks code block, shown in Figure 10.9, apply only to sprites. They
allow you to change a sprite’s size.

The first code block modifies a sprite’s size by specifying a relative value. Using
this code block, as demonstrated next, you can slowly increase a sprite’s size and
then reduce its size just as quickly.

change size by ()

set size to 9%

size

Figure 10.9
With these code blocks, you can modify a sprite’s size.

Making Sprites Appear and Disappear

The second code block shown in Figure 10.9 lets you set a sprite’s size to a specific
percentage of its current size (larger or smaller). For example, the following script
begins by doubling the size of a sprite. It then pauses for a second and reduces the
sprite to 50% of its original size. After another brief pause, the sprite is restored to
its original size.

o
set size to %0

set size to EEED %

Making Sprites Appear and Disappear

The next two looks code blocks, shown in Figure 10.10, apply only to sprites. As
the text displayed on the blocks indicates, they programmatically display or hide
a sprite.

Since they do not accept any input, these two code blocks are very easy to work
with. For example, the following script can be added to any sprite to make it
disappear and then reappear after a one-second pause.

Figure 10.10
With these two code blocks, you can control when sprites appear on the stage.

205

206

Chapter 10 = Changing the Way Sprites Look and Behave

Determining What Happens when Two
Sprites Overlap

The last two Scratch looks code blocks, shown in Figure 10.11, specify what
happens when all or part of a sprite is covered by another sprite.

In Scratch, each sprite that you add to an application is assigned to a layer. For
example, suppose you create an application with multiple sprites. When you add
the first sprite to the application, it is placed at the topmost layer. When you add the
application’s second sprite, it gets added to the top layer, and the previous sprite gets
moved back one layer. Each additional sprite starts off on the top layer and stays there
until you either add another new sprite or until you click on one of the sprites that
was previously added, which moves the selected sprite back to the topmost layer.

By default, the first sprite would be placed on the top layer. The second sprite
added to the application would be placed on the second layer, and the third sprite
would be placed on the third layer.

Understanding the layer on which a sprite has been placed is important because
the sprite’s layer assignment determines whether it remains on top or is displayed
underneath another sprite when they overlap one another. Sprites at higher levels
remain on top of sprites at lower levels.

Note

To better understand the importance of levels, consider what happens when you place five pieces
of paper on top of one another on a desk. The piece of paper sitting on top (at the top layer) is
visible, and your view of the other pieces of paper is obstructed. Now, reach into the middle of the
stack of paper, pull out a sheet, and place it on top of all the other pages. By altering the page’s
layer position, you have now made it visible.

In addition to controlling what happens to sprites by adding them to applications
in a specific order, controlling their layer position, you can use the code blocks
shown in Figure 10.12 to programmatically control a sprite layer location. For
example, using the first code block, you can move a sprite to the top layer,
ensuring that it remains visible at all times on the stage, even when other sprites
come into contact with it.

go to front
go back § layers

Figure 10.11
With these code blocks, you can determine what happens when two sprites overlap.

Developing the Crazy Eight Ball Game

As an example of how to work with both of these code blocks, revisit the Ball
Chase game that was presented in Chapter 9, where both of these two code blocks
were used to ensure that end of game messages were displayed on top of all other
sprites. In addition, the application also used these blocks to ensure that the cat
overlaps the ball when it catches it.

Developing the Crazy Eight Ball Game

Now it is time to turn your attention to the development of a new Scratch
application, the Crazy Eight Ball game. This game simulates the operation of a
crazy eight ball fortune-telling toy. As you work on the development of this game,
you will get additional experience with different looks code blocks. In total, the
application is made up of three sprites and three scripts. Figure 10.12 shows how
the game looks when first started.

To play the game, think of a question and then click on the image of the cat located
in the center of the eight ball. Once clicked, the image of the cat is replaced with

an 8, as demonstrated in Figure 10.13, and over the next four seconds, the sounds
of bubbles can be heard.

Figure 10.12
To play, you must ask questions that can be answered with yes/no-style answers.

8

Figure 10.13
It takes a few moments for the crazy eight ball to come up with an answer.

207

208

Chapter 10 = Changing the Way Sprites Look and Behave

Figure 10.14
The crazy eight ball has decided not to answer the player's question.

The crazy eight ball displays any of five randomly selected answers in response to
player questions. The range of answers supported by the game includes:

= Maybe!

= No!

= Yes!

m Ask a different question!

m Maybe. .. but then maybe not!

Figure 10.14 shows how the game looks once it has finally decided on an answer
to the player’s question.

The development of this application project will be created by following a series
of steps, as outlined here:

1. Creating a new Scratch application project.

2. Adding and removing sprites.

3. Adding the variable needed by the application.

4. Adding an audio file to the application.

5. Adding a script to control the display of the 8 in the eight ball.
6. Adding the programming logic required to operate the eight ball.

7. Saving and executing your work.

Developing the Crazy Eight Ball Game

Step 1: Creating a New Scratch Project

Begin the creation of the Crazy Eight Ball game by creating a new Scratch project.
The easiest way is to start Scratch, which automatically creates a new application
project. Alternatively, if Scratch is already open, create a new application by
clicking on the New button located on the Scratch menu bar.

Step 2: Adding and Removing Sprites

The Crazy Eight Ball game consists of three sprites and three scripts, as shown in
Figure 10.15.

The first sprite that you need to add to the game is that of an empty eight ball.
The second sprite is that of a number 8. You will find copies of graphics for both
of these sprites located on this book’s companion CD-ROM. You can add these
sprites to your new Scratch application by clicking on the Choose New Sprite
from File button and then selecting these files. Alternatively, you can create them
yourself by clicking on the Paint New Sprite button and then using the Paint
Editor program. Once added to the stage, reposition these two sprites so that the
eight ball is centered in the middle of the stage and the number is centered in the
middle of the eight ball.

The application’s third sprite is that of a cat’s face. You can create this sprite by
using the Paint Editor program to edit the application’s default sprite, removing
the Cat sprite’s body, leaving just its face in place. Once modified, click on the

Figure 10.15
An overview of the different components that make up the Crazy Eight Ball game.

209

210

Chapter 10 = Changing the Way Sprites Look and Behave

;cIIh_ange. RandomNo by)

_I set RandomNo to m

‘RandomNo’

Figure 10.16
The Crazy Eight Ball game requires one variable.

Grow Sprite button located on Scratch’s toolbar and then click on the image of
the Cat sprite 12 times to increase the size of the cat’s face. Next, reposition the
Cat sprite, moving it onto the center of the eight ball so that it overlaps the Cat
sprite. At this point, the overall design of the Crazy Eight Ball game is complete.

Before moving on to the next step, rename these three sprites Cat, EightBall, and
Number, as shown in Figure 10.15.

Step 3: Adding a Variable Required by the Application

In order to execute, the Crazy Eight Ball game requires the definition of the
variable shown in Figure 10.16. To add this variable, click on the Variables button
located at the top of the blocks palette, click on the Make a Variable button, and
create a new variable named RandomNo.

This variable will be used to store a randomly generated number that the game
will use when generating answers to player questions.

Step 4: Adding an Audio File to the Application

The Crazy Eight Ball game makes use of a single sound effect, which sounds like
bubbles being blown in water. This sound is played for four seconds preceding
the display of the eight ball’s answer. The audio file that is played must be added
to the Cat sprite. To add this sound file, select the Cat sprite thumbnail in the
sprite list and then click on the Sounds tab located at the top of the scripts area.
Next, click on the Import button to display the Import Sound window, double-
click on the Effects folder, select the Bubbles audio file, and then click on OK.

Step 5: Creating a Script to Control the Display of the 8 in
the Eight Ball

Of the application’s three scripts, two belong to the Number sprite. These scripts,
shown next, are automatically executed based on the receipt of broadcast messages.

Developing the Crazy Eight Ball Game

Specifically, when a message of Show 8 is received, the Eight sprite is made visible.
When the message Hide 8 is received, the Eight sprite is hidden. The receipt of these
messages serves as triggers, which control when the Eight sprite is visible (which only
occurs when the eight ball is in the process of preparing to generate an answer).

I when I receive

hide

Asyou can see, these two scripts each use a looks code block to control sprite visibility.
Since the game begins by displaying only the image of the Cat sprite, go ahead and
click on the second script belonging to the Eight sprite, hiding it from view.

Step 6: Adding the Programming Logic Needed to
Control the Eight Ball

The last script in the application, shown next, belongs to the Cat sprite. It is executed
whenever the player thinks of a question and clicks on the Cat sprite for an answer.

Randomnio tn-ﬂh random [to B

Once started, the script begins by assigning a random number in the range of 1 to
5 to the RandomNo variable. Next, a looks code block is executed, hiding the Cat
sprite and then the broadcast message Show 8 is sent. This message will trigger the

211

212

Chapter 10 = Changing the Way Sprites Look and Behave

execution of a script belonging to the Eight sprite. Next, the Bubbles audio file is
played, and the script’s execution is paused for four seconds, allowing Scratch
time to finish playing the audio file. Once the four seconds is up, a second
broadcast message of Hide 8 is sent, triggering the hiding of the Eight sprite.

Next, the Cat sprite is redisplayed on the stage and the value assigned to RandomNo
is analyzed. Depending on the value assigned to RandomNo, one of five different
text messages is displayed in a speech bubble. After two seconds, the bubble is
closed, and the game waits on the player to ask another question.

Step 7: Saving and Executing Your Scratch Project

At this point, you have all of the information you need to create your own copy of
the Crazy Eight Ball game. As long as you followed along carefully with the
instructions provided in this chapter, you should not run into any problems. If
you have not done so yet, save your new Scratch application project and then
switch over to Presentation mode and test it.

Summary

In this chapter, you learned how to work with Scratch’s looks code blocks. This
included learning how to switch between sprite costumes and different stage
backgrounds and how to apply a range of special effects to sprites and back-
grounds. You learned how to display text in speech and thought bubbles, control
the size of sprites, and programmatically control sprite visibility. You also
learned about the importance of understanding layering and how it affects the
display of sprites. This chapter also guided you through the creation of the Crazy
Eight Ball game.

CHAPTER 11 -

SPICING THINGS UP WITH
SOUNDS

Many different types of applications, especially computer games, rely on sound as
a means of conveying meaning and excitement. Through the addition of back-
ground music and sound effects, applications can really come alive, providing
users with a deeper and more meaningful experience. In Scratch, sound effects
and music are integrated into applications using sound blocks. This chapter will
teach you how to work with all of Scratch’s sound blocks and demonstrate how
to incorporate audio files, drum notes, and musical notes into your applications.
On top of all this, you will learn how to create a new application called the Family
Picture Movie, which demonstrates how to create a slideshow complete with
accompanying background music.

The major topics covered in this chapter include learning how to

m Control the playback of audio files
m Play drum beats and pause drum play

m Set and control the volume at which audio files, notes, and musical in-
struments are played

m Set and change the tempo of drum and note play

213

214

Chapter 11 = Spicing Things Up with Sounds

Playing Sounds

To add the playback of music and sound effects to your applications, you need to
learn how to use the sound code blocks shown in Figure 11.1. These code blocks
provide everything you need to play or stop the playback of MP3 and wave files in
your Scratch applications.

Note

A wave file is a type of file designed for storing an audio bit stream on personal computers. Wave
files have a .wav file extension. An MP3 file is an audio file that utilizes advanced compression
technology while retaining high audio quality.

The first two code blocks shown in Figure 11.1 let you play any MP3 or wave file
that you add to your Scratch project. The third code block lets you stop the
playback of all of the audio files belonging to a sprite. In order to play an audio
file, you must first add it to a sprite or to the stage, which you can do by selecting
the stage or a sprite from the sprite list, clicking on the Sounds tab location at
the top of the scripts area, then clicking on the Import button. Once the file is
imported, you can play the audio file using a script belonging to the stage or
sprite, as demonstrated here.

In Figure 11.2, an audio file named meow is played when the green flag button is
pressed. In order to play the audio file, you must select it from the code block’s
drop-down list. The drop-down list is automatically populated by Scratch with
all the audio files that have been added to the sprite to which the script belongs.

The sound code block used in the previous script allows the script to which it
has been added to continue running. If the script containing the sound block

until done

stop all sounds

Figure 11.1
These code blocks control audio file playback.

[

play cound meas |

Figure 11.2
The meow audio file is played when the green flag button is clicked.

Playing Sounds

has additional code left to be executed, the playback of the sound will be
cut short when the script continues executing. This was not a problem in
the previous example because the sound block was the last code block in the
script.

For situations where you want to pause script execution to allow time for the
entire audio file to finish playing, you have two choices. First, you can add a
control block to the script immediately following the sound block that pauses
script execution for a specified number of seconds (the number of seconds
needed to play the audio file). Better yet, you can use the second code block
shown in Figure 11.1 as demonstrated in the following script:

(e - i
play sound meow | until done

The sound code block used in this example plays an audio file that has been
previously added to your Scratch application, pausing script execution until the
audio file has finished playing. Once playback is complete, the rest of the script is
permitted to finish its execution.

Tip

If you want to add the repeated playback of background music or sound effects to an application,
create a script specifically for this purpose. This keeps the programming logic needed to play the
audio file separate from other scripts and eliminates the need to pause other scripts’ execution to
support audio playback.

Depending on what your applications are designed to do, there may be times
when you want to stop the playback of audio files belonging to a sprite or the
stage. This can be achieved using the third code block shown in Figure 11.1, as
demonstrated in the following example:

stop all sounds

Here, the playback of any audio files belonging to the sprite is immediately halted
when the spacebar is pressed.

215

216

Chapter 11 = Spicing Things Up with Sounds

Note

In addition to playing any of the audio files supplied with Scratch, you can import external audio
files, both MP3 and wave, into any sprite. If your computer has a microphone, you can record your
own audio files by selecting a sprite or the stage, clicking on the Sounds tab located at the top of
the scripts area, and then clicking on the Record button. This opens the Sound Recorder program
shown in Figure 11.3. To record a custom sound, just click on the red Record button, and when
you are done, click on OK. Once done, your new audio file will be displayed on the Sounds tab
immediately available to your application.

. Sound Recorder J
.

Figure 11.3
Scratch makes it easy to record your own custom audio files.

Play a Drum

Using the two code blocks shown in Figure 11.4, you can add the playing of a
drum to your Scratch application and, when necessary, pause drum play for a
specified number of beats.

The first code block shown in Figure 11.4 plays a drum sound for a specified
number of beats. This code block lets you choose from among 46 different types
of drums, each of which is easily selected by clicking on the code block’s drop-
down list, as demonstrated in Figure 11.5.

The second code block shown in Figure 11.4 lets you momentarily pause drum
play for a specified number of beats. Using both of the code blocks, you can play a
wide assortment of drums within your applications.

play drum for beats

rest for beats
play drum for beats

play drum [EE3 for beats
rest for [beats

Figure 11.4
These code blocks let you control the playing of a drum within your applications.

Playing Musical Notes 217

(a7 1w T
A8) Hi-Md Torm
49) Crash Cymbal 1
5N} High Trim

51) i Cymibal 1
52) Chinese

53] Ride Bell

{54) Tambourne
(55} Splash Cymbal
6} Cowbell

57) Crash Cymbal 2
50) Vibrasleo

Sa) Ride Cymbal 2
&0} Hi Bongo

01} Low Dongo
B2} Mute Hi Zonga
£3) Open Hi Conga
G4} Low Canga
£5) High Timbale
66) Low Tirmbale
67} High Agogo
68) Low Agogo

£0) Cabasa

70} Mar auas

{74] Long Guiro

TR B

Figure 11.5
This code block supports the playing of 46 different types of drum sounds, numbered from 35 to 81.

In this example, the first sound block plays a drum beat for five beats using an
Acoustic Snare. The second sound block rests for .5 beats, and the third code
block uses an Open Triangle to play a drum for .5 beats.

Playing Musical Notes

In addition to playing audio files and different types of drum beats, Scratch lets
you play musical notes with various instruments using the sound code blocks
shown in Figure 11.6.

The first code block plays a note for a particular number of beats. You can specify
a note either by typing it into the code block’s first input box or by clicking on the
drop-down list located inside the code block’s input field, which displays a
graphic representation of a piano keyboard. Using this keyboard, you can select a
note by clicking on one of the keyboard keys, as demonstrated in Figure 11.7. The
range of available notes is from 0 to 127, with 60 representing the middle C note.

The second code block shown in Figure 11.6 specifies the instrument to be used
and is designed to be used in conjunction with the first control block. It supports
a total of 128 different instruments, numbered 1 to 128. You can select an

218

Chapter 11 = Spicing Things Up with Sounds
play note GRS for beats
set instrument to (B3

Figure 11.6
These sound blocks let you play notes using musical instruments.

play note EiE3 for (5 beats

C {60}

Figure 11.7
Selecting a note is as easy as clicking on a piano key.

(R} Flertric: Plann 7
({f) Harpsichord
(8) Clavinet

(u) Celesta

() i
{11) Music Box
{12} Vibraphone

(21} Reed Organ

(22) Accordion

(23) Har iz

(24) Tarmu Aucur din
(25) Nyl Slrinwg Guitar
(26) Steel Sram Guilar
(27) Electric Jazz Guitar
(#R) Flertric Clran Guitar
(#9) Flertric Misted Guirar
(A1) Cnerdriven Caitar
(A1) Distortinn Guitar
([42) Gauitar Harmonics
(43) Acoustic Bace

(34} Blectric Bass (finger)
{35) Electric Bass {pick)

1 36) Fratlacs Bacc

{37) Slap Bass 1

{38) Slap Bass 2

{39} Synth Bass 1
{40) Synth Bass 2
11 e,

Figure 11.8
Selecting the instrument you want play within your Scratch application.

instrument by keying its number into the block’s input field or by selecting an
instrument from the block’s drop-down list, as demonstrated in Figure 11.8.

The following script demonstrates how to use both of the code blocks shown in
Figure 11.6 to play a C note followed by a D note using a harpsichord. Each note
is played for .5 beats.

Configuring Audio Volume

set instrument to

play note (EE3 for {5 beats
play note for [beats

Configuring Audio Volume

Rather than playing audio files, drum beats, and musical notes at whatever
volume the computer is set to, you can use the sound code blocks shown in
Figure 11.9 to change or set the volume at which audio files, drum beats, and
musical notes are played.

The first code block shown in Figure 11.9 is used to change the volume of sound
playback for an individual sprite. Using this code block, you can change a sprite’s
volume by a specified percentage, with 0 being no volume and 100 being the
maximum volume. The second code block lets you assign a specific value to a
sprite in the range of 0 to 100. Using the third code block, you can retrieve a
sprite’s volume and optionally display this value in a monitor on the stage.

Note

Volume is set individually for each sprite in an application. Therefore, you can assign different
volume levels to each sprite in your application.

An example of how to work with the first of these control blocks is provided here:

play sound

change volume by E)

play sound meow v

Here, an audio file named meow is played at the computer’s default volume level.
Next, the volume setting for the sprite to which the script has been added is

change volume by E0)

set volume to L)

wvolume

Figure 11.9
Using these code blocks, you can take control of the volume of music and sound effects played by any

sprite in your application.

219

220

Chapter 11 = Spicing Things Up with Sounds

reduced by 80%. The meow file is then played a second time, this time much
quieter.

In this next example, the sprite’s volume is set to 10 percent of its default volume
level, after which an audio file named meow is played.

Note

The third code block shown in Figure 11.9 can be used to retrieve a sprite’s current volume level.
In addition, by selecting its check box, you can enable a monitor that displays the volume level of
the sprite on the stage.

Setting and Changing Tempo

The last three looks blocks provided by Scratch are shown in Figure 11.10. Using
these blocks you can set, change, and report on the tempo at which drum beats
and musical notes are played.

The first code block shown in Figure 11.10 changes the tempo used to play a
drum or note. Tempo is a measurement of the speed, in beats per minute, at
which a drum or note is played. The larger the tempo value, the faster the drum
or note is played. The second code block lets you set the tempo used to play a
drum or note to a specific number of beats per second. Using the third code
block, you can retrieve a sprite’s currently assigned tempo and optionally display
this value in a monitor on the stage.

The following script demonstrates how to set and modify a sprite’s tempo when
playing musical notes:

change tempo by ED

set tempo to ED bpm
tempo

Figure 11.10
These code blocks allow you to modify and report on the tempo used by a sprite to play beats and
notes.

Creating the Family Picture Movie

set tempo to 1) bpm
play note G for @ baats

chanae tempo by G

play nate D for @5 heats

Here, the tempo used to play notes is set to 60 beats per minute, and then, after a
one-second pause, a C note is played five times in a row, each time for a half a
beat. After another one-second pause, the sprite’s tempo is slowed down by 20
beats per minute, and another C note is played five times.

Creating the Family Picture Movie

The rest of this chapter is dedicated to showing you how to develop your next
application project, the Family Picture Movie. The development of this appli-
cation provides the opportunity to work further with different sound blocks,
controlling sound volume, playback, and playback termination. In total, the
application will be made up of 8 sprites and 13 scripts. Figure 11.11 shows how
the application looks when initially started.

To run the application and view its picture show, all you have to do is click on the
green flag button. Once clicked, the application begins an animation sequence
that counts down from five and then starts displaying a series of pictures
representing the contents of the movie, as demonstrated in Figure 11.12.

Background music is played to help set a friendly tone as the pictures are dis-
played. The Family Picture Movie is capable of displaying any number of pic-
tures. Once the movie ends, credits are displayed, as shown in Figure 11.13.

Figure 11.11
The application begins by displaying a series of numbers, from 5 to 1, on an orange radar screen.

221

222

Chapter 11 = Spicing Things Up with Sounds

Figure 11.12
As the movie plays, a series of pictures is displayed at three-second intervals.

Written By Jerry Ford

Starring the Ford Family

2008

Figure 11.13
Credits are displayed at the end of the movie.

The development of this project will be created by following a series of steps, as
outlined here:

1. Creating a new Scratch project.

2. Adding and removing sprites and backgrounds.

(SN

. Adding the variable needed by the application.

o~

. Adding an audio file to the application.

1921

. Adding the programming logic to control application execution.

@)

. Saving and executing your work.

Step 1: Creating a New Scratch Project

To begin the development of the Family Picture Movie, you must create a new
Scratch project. If Scratch is not already running, start it up, and you will be ready
to go. Otherwise, if you already have Scratch open, click on the New button
located on the Scratch menu bar, and a new project will be created for you.

Creating the Family Picture Movie

())] L

Figure 11.14
An overview of the different components that make up the Family Picture Movie application.

Step 2: Adding and Removing Sprites and Backgrounds

The Family Picture Movie is made up of 8 sprites and 13 scripts, as shown in
Figure 11.14.

The application consists of two separate backgrounds: Counter, which is dis-
played when the application is first started and begins its countdown, and the
default blank stage background. A copy of the Counter background can be found
on this book’s companion CD. To add it, click on the Stage thumbnail located on
the sprite list and then click on the Backgrounds tab located at the top of the
scripts area. Next, click on the Import button and use the Import Background
window to locate and select the Counter background file. Since the Counter
background is going to be used as the application’s initial background, drag and
drop its thumbnail from the bottom of the list of background files to the top
position.

In addition to the background, the Family Picture Movie makes use of a number
of sprites. As shown in Figure 11.15, the first of these sprites is a black line. You
can create this sprite yourself using the Paint Editor program, or you can import
the Line sprite located on this book’s companion CD. To add this sprite, click
on the Choose New Sprite from File button, opening the New Sprite window,
and then locate and import the sprite. Once the sprite is added, you need to
position it exactly as shown in Figure 11.14.

223

224

Chapter 11 = Spicing Things Up with Sounds

Note

If you elect to create your own version of the Line sprite, you will need to set the rotation center
for the sprite as shown in Figure 11.15.

import =] o) [#=(2) [dleor

(T T T IS

Aalll &
(13 Cancel

Figure 11.15
Assigning a rotation center to the Line sprite.

Next, you need to add five sprites representing numbers displayed during the
application’s opening animation sequence. To add the first of these five numbers,
click on the Choose New Sprite from File button and then drill down into the
Letters folder followed by the Stone folder. Next, select the 5 sprite and click on
the OK button. As you will see, the sprite is colored black and white. However, it
is supposed to be red and yellow. To fix this, you need to edit the sprite and
change its colors. To do this, select the thumbnail representing the sprite and
then click on the Costumes tab located at the top of the scripts area. Next, select
the sprite’s thumbnail and click on its Edit button, opening it in the Paint Editor
program. Using the Fill tool located in the Paint Editor’s toolbar, modify the
black portions of the sprite and make them red. Then modify all of the white
portions of the sprite, making them yellow. Using the steps outlined above, add
the 4, 3, 2, and 1 sprites to the application, editing each one so that they are red
and yellow.

Once the initial animation sequence has finished, the Family Picture Movie
begins displaying a series of graphics pictures. To add the first of these pictures,
click on the Choose New Sprite from File button and then add any graphic files
that you want. If you do not have a suitable graphic file handy, you can use the

Creating the Family Picture Movie

Pics file located on this book’s companion CD. The rest of the pictures shown in
the application will be displayed by changing this sprite’s costume. To add
additional costumes to the sprite, select the sprite, click on the Costumes tab
located at the top of the scripts area, and then click on the Import button,
opening the Import Costume window. If you do not have any suitable pictures to
be used as backgrounds, you can import the background files provided on this
book’s companion CD. These background files have names like IM000327.

The last sprite to be added to the application is a graphic file that displays the
application’s credits. You can create and add your own sprite using the Paint
Editor program, or you can import the Credits sprite located on this book’s
companion CD. Once this sprite has been added, the stage should be filled with
different sprites. However, of all of these sprites, only the Line sprite needs to
remain visible. To temporarily remove each of the remaining sprites from view,
select each sprite one at a time, click on the Looks button located at the top of the
blocks palette, and then double-click on the Hide code block. By the time you are
done, the stage should look like the example shown in Figure 11.14.

Step 3: Adding a Variable Required by the Application

In order to execute, the Family Picture Movie requires that you define a single
variable. To add this variable, click on the Variables button located at the top of
the blocks palette, click on the Make a Variable button, and then create a new
variable named Counter, as shown in Figure 11.16.

The application will use the variable to control the execution of the application’s
opening countdown sequence, coordinating the display of the numbers used
during the countdown process.

Step 4: Adding an Audio File to the Application

As it executes, the Family Picture Movie plays background music to set the mood
for the application. The script responsible for playing this music belongs to the
Pics sprite. To add this audio file to the Pics sprite, select the sprite’s thumbnail

change Counter by

fse_t Counter to m

Countar

Figure 11.16
The Family Picture Movie uses one variable to help control the opening animation sequence.

225

226

Chapter 11 = Spicing Things Up with Sounds

in the sprite list and then click on the Sounds tab located at the top of the scripts
area. Next, click on the Import button to display the Import Sound window,
double-click on the Music Loops folder, select the GuitarChords?2 audio file, and
then click on OK.

Step 5: Developing the Application’s Programming Logic
The programming logic that drives the execution of the Family Picture Movie is
organized into 13 separate scripts, assigned to each of the application’s sprites
and to its background. The overall execution of all of this application’s scripts is
coordinated through the use of broadcast messages and through the use of
control blocks that monitor the value assigned to the application’s variable,
executing only when the variable reaches a predefined value.

Setting Up the Opening Animation Sequence

The Family Picture Movie begins running when the player clicks on the green flag
button. When this occurs, a number of the scripts within the application begin
executing. One of these scripts is responsible for managing the animated
sequence that plays when the application first begins executing. This script,
shown next, must be added to the Line sprite.

point in ect EE3

show

set Counter to B

'+ B

Creating the Family Picture Movie

As you can see, this script begins by setting the direction of the Line sprite and
then makes it visible. Next, the Counter variable is assigned a starting value of 6,
after which a loop is set up to execute five times. Within this loop, a second loop
executes 36 times (for a total of 360 degrees), rotating the Line sprite by
10 degrees and pausing .005 second after each turn. The value assigned to Counter
is then decremented by a value of —1.

By the time the outer loop has executed five times, five other application scripts,
monitoring the value assigned to Counter, are executed. Each of these five scripts
is responsible for displaying a number on the stage. The end result is an animated
sequence that emulates the countdown that is often displayed at the beginning of
old movie reels. Once the countdown has been completed, a second loop exe-
cutes, rotating the Line sprite one final time around the center of the stage. Once
the last loop has finished, the value of Counter is reset to 6 and pointed back to its
initial direction. A one-second pause then ensues, and the Line sprite is hidden.
Lastly, a control block is used to send a broadcast message of Start Movie. This
broadcast message will be used to trigger the execution of two scripts belonging
to the Pics sprite, which is responsible for displaying the pictures that make up
the application’s picture show.

Displaying the Numeric Countdown

As the previous script executes, it modifies the value assigned to the Counter
variable, changing its value from 6 to 1, one number at a time. Each of the five
sprites representing the numbers displayed during the opening animation
sequence is displayed by scripts belonging to those sprites. The scripts belonging
to each sprite are nearly identical. The following script belongs to the Sprite5
sprite:

As you can see, it starts executing when the player clicks on the green flag button,
which begins by making sure that the sprite is hidden from view. The script then
goes into a loop that waits until the value of Counter is set to 5. Once this occurs,

227

228

Chapter 11 = Spicing Things Up with Sounds

the script displays the sprite for 1.6 seconds and then hides it again. After creating
this script, drag and drop an instance of it onto the Sprite4, Sprite3, Sprite?,
and Spritel sprites and then modify the scripts belonging to each sprite by
changing the value that is looked for to 4, 3, 2, and 1, respectively.

Switching Costumes and Playing Background Music

As has been previously stated, the application displays different pictures by
changing costumes. In addition, background music is played to help set the
mood as the picture show begins. Two separate scripts, belonging to the Pics
sprite, are responsible for managing the switching of costumes and the playing of
the application’s audio file. Both of the scripts are automatically executed when
the Start Movie broadcast message is received.

The first of these two scripts, shown next, manages costume switches. It begins by
displaying a default costume of IM000327, which is then displayed on the stage.
Next a loop is set up that pauses three seconds and then switches the sprite’s
costume to the next costume in the list.

The second script, shown next, begins by sending out its broadcast message of
Clear background and then sets the sprite’s value to half its current level. Next, a
loop is set up that executes 10 times. Each time the loop executes, an audio file
named GuitarChords? is played. At the end of its tenth execution, the loop halts,
and the Pics sprite is hidden. The script ends by sending out a broadcast message
of Show Credits.

Creating the Family Picture Movie

Note

The Show Credits broadcast message is used as a trigger that executes a script belonging to
the Credits sprite.

Displaying the Closing Credits

The Credits sprite has two scripts, as shown next. The first script executes when
the green flag button is pressed and is responsible for removing the display of the
sprite from the stage.

The second script is automatically executed when the Show Credits broadcast
message is received. It displays the Credits sprite, waits three seconds, and then
hides the sprite, leaving the stage blank. The script ends by executing a control
block that halts the execution of the application’s scripts.

Switching Backgrounds

The last two scripts belong to the stage. These scripts are shown next. The first
script executes when the green flag button is clicked. Its job is to switch the stage’s
background to Counter, readying the application to begin its five-second
countdown sequence.

switch tu backgrousd Counter

The second of the stage’s scripts automatically executes when the Clear Background
broadcast message is received. Once executed, it switches the stage back to the
default Clear background.

229

230

Chapter 11 = Spicing Things Up with Sounds

Step 6: Saving and Executing Your Scratch Project

Assuming you have followed along carefully with the instructions that have been
provided, your copy of the Family Picture Movie should be ready for testing. If
you have not already saved your new application, do so now. When you are
ready, click on the green flag button to run the application and watch the movie.
In the event that you run into any problems, go back and recheck your work
against the instructions outlined in this chapter.

Summary

The addition of sound playback is fundamental to the operation of many Scratch
applications. In Scratch, sound effects and music playback are controlled
through different sound code blocks. Using these code blocks, you can convey
additional meaning and enhance excitement when your applications run. This
chapter provided instruction on how to work with all of Scratch’s sound blocks
and to use them to play audio files, drum notes, and musical notes. You also
learned how to change the tempo at which drums and notes are played; control
the volumes at which audio files, notes, and drum beats are played; and select
different types of drums and instruments to be played.

CHAPTER 12 -

DRAWING LINES AND SHAPES

In addition to displaying sprites with different costumes and different stage
backgrounds, Scratch also draws custom lines, shapes, and other graphics using
pen code blocks. Using a virtualized pen, these blocks allow you to set the color,
width, and shade used in drawing operations. This chapter reveals how to work
with all of Scratch’s pen blocks and will end by demonstrating how to use them to
create a paint drawing application.

The major topics covered in this chapter include learning how to:

m Draw using Scratch’s virtual pen
m Set the color used when drawing
m Set pen shade and size

Stamp a copy of a costume on the stage

m Clear the stage of any drawing operations

Clearing the Stage Area

The first of Scratch’s pen code blocks, shown in Figure 12.1, is designed to let you
clear out any drawing operations that you may have made on the stage.

231

232

Chapter 12 = Drawing Lines and Shapes

Figure 12.1
This pen block is used to clear out any drawing operations that you may have made on the stage.

Anything you draw or stamp on the stage’s current costume does not actually
change the costume. Therefore, when you clear out any drawing, the costume
that makes up the background remains unchanged. The following script
demonstrates how easy it is to use this code block:

(whan ~ ctikad ™

By adding a script like this to a Scratch application, you can reset the stage back to
its original state (erasing any drawing made to the stage).

Drawing with the Pen

Within Scratch applications, drawing is performed using a virtual pen. This pen
works very much like a real pen. When placed in a down position, it can be used
to draw on the stage. When placed in an up position, drawing ceases. In order
to draw or stop drawing, you must be able to programmatically control the
pen’s up and down positions, which you can do using the code blocks shown in
Figure 12.2.

Using the first code block, you can easily create a simple drawing application. To
create this application, start a new Scratch project and then delete the default cat
sprite and replace it with a new sprite made up of a small black dot (easily created
using the Paint Editor program). Once you have created your new application as
described above, select its sprite and add the following script to it:

pen down
pen up

Figure 12.2
Using these pen blocks, you can control when the pen can be used to draw.

Drawing with the Pen

clear

pen down

i go to mouse-pointer

When executed, this script clears the stage and then places Scratch’s virtual pen in a
down position, enabling drawing to occur (whenever the sprite to which the script
belongs is moved). Next, a loop is set up that uses a motion block to make the sprite
follow the pointer around the stage. As a result, whenever you move the mouse
around the stage, the sprite follows, and a line is drawn. Once you create and run
your own copy of this application, it should become immediately clear that you do
not have enough control over the pen. Specifically, you cannot control when and
when not to draw. This situation is easily remedied by modifying the script so that
you can place the pen in a down or up position based on the status of the mouse-
pointer’s left-mouse button, as shown next.

. mouse down? |
pen down

go to mouse-pointer

pen up

go to mouse-pointer

Figure 12.3 shows an example of a picture drawn on the stage using this modified
version of the application. By being able to control when the pen is in a down
position, you can produce a precise drawing.

Figure 12.3
A quick little doodle created using a small drawing application.

233

234

Chapter 12 = Drawing Lines and Shapes

Setting Pen Color

In addition to being able to clear the stage and control when the pen is up or
down, Scratch also specifies the color that is used in drawing operations using
any of the three pen code blocks shown in Figure 12.4.

The first code block shown in Figure 12.4 lets you set the color to be used when
drawing by allowing you to click on the color swatch located in its input field.
When the swatch is clicked, Scratch responds by displaying a color palette, as
shown in Figure 12.5. You can select the color you want either by clicking on the
color shown within the color palette or by moving the pointer, which now looks
like a dropper, over any color currently displayed anywhere on the Scratch IDE
and clicking in it. Once specified, the color you selected is displayed in the code
block’s input area.

The following script demonstrates how to use this code block to specify the color
you want to use.

Here, the stage is cleared, and the pen’s color is set to red. Otherwise, the
application operates no differently than before.

set pen color to

change pen color by @)

set pen color to @)

Figure 12.4
The code blocks let you control the color used when drawing.

LA

Figure 12.5
Select a color by clicking anywhere on the color palette.

Setting Pen Color

| when clickla_a_ B

clear

set pen color to

forever
o
;if mouse down?

| pen down

Scratch also lets you specify the color to be used when drawing by specifying a
number. For example, the following list identifies numbers that you can use to
specify a range of commonly used colors.

m 0=red
m 20 = orange

35 = yellow

m 70 = green

m 130 = blue
m 150 = purple
m 175 = pink

By experimenting with other numbers, you identify a host of different colors. For
example, using the second code block shown in Figure 12.4, you change the color
used when drawing, changing it relative to its currently assigned value.

[I when [clii:kc;::l_ =i

clear
[forever
change pen color by
:I}_ mouse down? |
pen down

go to mouse-pointer

pen up

235

236

Chapter 12 = Drawing Lines and Shapes

Here, the pen block has been added to the beginning of the script’s loop. Each
time the loop repeats, it changes the pen’s current color assignment by a value of
10. The result is that a rainbow effect is applied as you draw, with the color
changing across a full spectrum supported by Scratch as you move the mouse and
draw on the stage.

Using the third code block shown in Figure 12.4, you can specify the color to be
used when drawing using its associated numeric value. For example, you could
modify the application’s script to draw using red with this code block by passing
it a value of 0, as demonstrated here.

(T

clear

set pen color to [

= mouse down?

pen down

go to mouse-pointer

pen up

go to mouze-pointer

Changing Pen Shade

In addition to selecting color, Scratch also allows you to select the level of shading
applied when drawing. The range of values supported by the pen shade is 1 to
100, as demonstrated in Figure 12.6.

By default, Scratch applies a shading value of 50 when drawing colors. A shade
value of 0 results in a black color. A shade value of 100 results in white. Scratch
lets you specify the level of shading to be applied when drawing using either of
the pen code blocks shown in Figure 12.7.

0 100

Figure 12.6
Shading affects the application of light to a color.

Changing Pen Shade 237

change pen shade by

set pen shade to

Figure 12.7
You can change the value used to apply shading by varying its current value or by setting an entirely

new value.

As an example of how to work with the first code block shown in Figure 12.7, let’s
modify the drawing example again as shown here.

,r when Clil:ke“t-i_ -
clear
set pen color to [
change pen shade by
(forever
‘“r’f_ mouse down?
pen down
go to mo
gel;a
pen up

go to me

Here, the shading level has been increased by a value of 10. Rather than change the
shading level relative to its current value, you can use the second code block shown
in Figure 12.7 to specify a shade level, as demonstrated in the following script:

it:k'e-a__
clear
set pen color to [
set pen shade to [EX)

mouse down?

pen down

go to m
éeI;_a
pen up

go to m

238

Chapter 12 = Drawing Lines and Shapes

Working with Different Size Pens

In addition to setting color and shading values, Scratch also lets you change the
size of the pen. This can be accomplished using either of the two pen code blocks
shown in Figure 12.8.

By default, Scratch draws using a pen size of 1. You can change the pen size relative
to its current size using the first code block, as demonstrated in the following script:

l”when _.':'::i' i

cl‘ear

set pen color to [
set pen shade to ED

change pen size by ()

B
| forever

[if" . mouse down? 3
pen down
go to o
Els_e_
pen up

go to mouse-po

Here, the size of the pen used in the drawing application in increased by 1,
making it twice its default size. If you prefer, you can simply assign a specific pen
size using the second code block, as demonstrated here.

I’when Hick;;l__
clear

set pen color to @)
set pen shade to ED)
set pen size to

i
| forever

if mouse down?

pen down

go to mouse-po

change pen size by B

set pen size to ()

Figure 12.8
Scratch supports an unlimited number of pen sizes.

Stamping an Instance of a Costume on the Stage

Figure 12.9
An example of a drawing made using a pen size of 10.

In this example, the drawing application has been modified to use a pen that’s
size has been increased to 10. Figure 12.9 shows an example of a simple drawing
created using the application with this pen size.

Stamping an Instance of a Costume on the Stage

In addition to all of the pen code blocks demonstrated so far, Scratch provides
one last block, shown in Figure 12.10, which allows you to capture a sprite’s
costume and use it to stamp copies of the sprite on the stage.

As an example of how to work with this code block, create a new Scratch
application, remove the default cat sprite from it, and then add a copy of the
crabl-a sprite to it. You will find this sprite in Scratch’s Animals folder. Once
added, shrink the sprite down to about a third of its default size and then add the
following script to it.

(han ™ chced

dear

go to x ¥
point in direction EEES

| stamp
mowe steps
turn G El) degrees

Figure 12.10
This code block lets you use a sprite's costume as the basis for creating a stamp.

239

240

Chapter 12 = Drawing Lines and Shapes

W %
¥ o

Figure 12.11
Decorating the stage using a sprite as the basis for generating stamps.

When executed, this script clears the stage of any previous drawing, which also
includes stamps, moves the sprite to the upper-left corner of the stage, and sets its
direction. Next, a loop is executed four times, stamping the image of the sprite
four times as it is moved around the stage. Figure 12.11 shows how the stage will
look once the script has finished executing.

Creating the Doodle Drawing Application

At this point you have completed your review of all of Scratch’s code blocks and
have learned how to put them all to work. Now it is time to work on the chapter’s
application project, the Doodle Drawing application. This paint-like application
expands on the examples you have been working on throughout this chapter,
making extensive use of the pen code blocks and allowing you to draw by
selecting from a range of predefined colors. The application allows you to draw
using a range of different pen sizes. There is also a C1ear feature that lets you start
over any time you want so that you can begin working on a new drawing.

In total, the Doodle Drawing application is made up of 12 sprites and 3 scripts.
Figure 12.12 shows how the game looks when first started.

Figure 12.12
Drawings are made by holding down the left mouse button and moving the mouse-pointer around the
stage.

Creating the Doodle Drawing Application

Figure 12.13
You can use any of 10 colors and 9 different pen sizes when drawing.

To create a drawing, click on one of buttons shown on the left-hand side of the
stage to pick a color, then hold down the mouse’s left button, and move the
mouse-pointer around the stage. If you want, you can use different-sized lines
when drawing by pressing keyboard keys 1 through 9. Pressing the 1 key results
in a thin line, whereas pressing the 9 key results in a line that is approximately a
quarter-of-an-inch thick. If you make a mistake or want to start over, you can
do so at any time by clicking on the Clear button located at the lower-left side of
the stage.

Figure 12.13 shows the Doodle Drawing application in action. Here, the appli-
cation has been used to draw a snowman, complete with a blue hat and red scarf.

The development of this application project will be created by following a series
of steps, as outlined here:

1. Creating a new Scratch application project.
2. Adding and removing sprites.
3. Developing the application programming logic.

4. Saving and executing your work.

Step 1: Creating a New Scratch Project

To begin work on the Doodle Drawing application, you need to create a new
Scratch project. If Scratch is already running, click on the New button located on
the Scratch menu bar. Otherwise, start Scratch up, and it will automatically
create a new application for you to work on.

241

242

Chapter 12 = Drawing Lines and Shapes

Step 2: Adding and Removing Sprites

The Doodle Drawing application is made up of 12 sprites and 3 scripts, as shown
in Figure 12.14.

This application does not need the default cat sprite, so you should begin by
removing that sprite from the application. The first 10 sprites that you need to
add to the application represent the application button controls. To add the first
of these controls, click on the Choose New Sprite from File button and drill down
in to the Things folder where the New Sprite window appears. Next, locate and
select the button sprite and then click on OK. Once it has been added to the stage,
drag and drop this sprite to the upper-left corner of the stage, click on the
Costumes tab located at the top of the scripts area, and then click on the sprite’s
Edit button.

Using the Fill tool feature located on the Paint Editor’s toolbar, change the entire
surface of the sprite to red. This will take a number of different clicks because the
sprite has many shaded areas and cannot therefore be filled with red in a single
click. Once you have completed this task, click on the Paint Editor’s OK button
and then rename the sprite Red.

e

Figure 12.14
An overview of the different parts of the Doodle Drawing application.

Creating the Doodle Drawing Application

Now that the first of the 10 button sprites has been created, things will go a lot
faster. Right-click on the Red sprite and select Duplicate from the popup menu
that appears. Rename the new sprite Orange and then click on the Edit button
located in the Costumes tab. Using the Fill tool control, make the button
orange and then click on OK. Now, reposition the Orange sprite so that it lines
up just under the Red sprite. Using the steps outlined in this paragraph, create
eight more buttons for the following colors.

m Yellow

m Green

m LightBlue
m NavyBlue
m Purple

m Pink

m Black

m White

Next, you need to add a small sprite in the shape of a black dot to the
application. To do so, click on the Paint New Sprite button and then when
the Paint Editor appears, click once on its canvas to make a black dot and
then click on the OK button. Rename this sprite Drawing Point. Now, add
the last sprite using the same steps you used to add the application’s first
button. Once added, click on the Edit button located on the Costumes tab
and using the Text tool feature located on the Paint Editor’s toolbar, add
the word Clear on top of the button (using the ComicSans font with a font
size of 14). Click on the OK button when you are done and rename the
sprite Clear and then reposition the sprite so that it appears as the final
button on the lower-right side of the stage.

The default blank background will be used in this application to provide it
with white space on which to draw. Assuming that you have created all of
the sprites as instructed above, you should be ready to begin the coding
process.

243

244

Chapter 12 = Drawing Lines and Shapes

Step 3: Creating Scripts Used to Control the Doodle
Drawing Application

Most of the Doodle Drawing application’s programming logic resides within a
single script belonging to the Drawing Point sprite. This script is responsible for
all drawing operations, including determining which color and what size pen the
user wants to use. The remaining logic revolves around the clearing of the stage,
which is handled by two small scripts, one belonging to the Clear sprite and the
other to the stage.

Developing the Drawing Point Sprite’s Programming Logic

The programming logic that controls the overall execution of all drawing within
the Doodle Drawing application belongs to a script that must be added to the
Drawing Point sprite. Do not let the length of the code deceive you; the pro-
gramming logic is really very simple.

To help make things easy to follow, the script will be developed in three parts. For
the first part, create and add the following script to the Drawing Point sprite:

set pen size to

set pen color to

mouse

pen down

show

As you can see, the script executes when the green flag button is pressed. It starts
by setting a default pen size of 4 and a default color of black. Next, a loop is set up
that will be used to manage the execution of all of the remaining code blocks. The
first set of code blocks to be embedded within the loop is already present. It
consists of a control block that checks to see if the left mouse button is being
pressed, and if it is, the Drawing Point sprite is moved to the mouse-pointer, the
pen is placed in a down position, and the Drawing Point sprite is displayed. If the

Creating the Doodle Drawing Application

left mouse button is not being pressed, then the pen is placed in an up position
and the Drawing Point sprite is hidden from view.

The programming logic outlined above is responsible for the overall manage-
ment of the drawing process and is in fact all that is needed to create a simple
drawing application. If you want, you can switch to Presentation mode and run
the application and use it to draw. Of course, as currently written, the application
only allows the user to draw using a color of black and a pen size of 4. To enhance
the application so that the user can select different colors by clicking on one of
the color buttons located on the left-hand side of the stage, add the following
code block to the end of the script, placing it inside and at the bottom of the
script’s loop.

_ touching Red

ching Furple

set pen color to

As you can see, the code blocks shown previously are organized using 10 separate
conditional code blocks, each of which checks to see if the Drawing Point sprite
has been moved over one of the 10 color buttons. (In order for the sprite to be
moved over one of the buttons, the Drawing Point sprite must be visible, which
occurs only when the left mouse button is pressed.) If it has, then the pen’s color
is changed to reflect the button the user has clicked.

245

246

Chapter 12 = Drawing Lines and Shapes

Note

The application only switches color when the Drawing Point sprite is moved over a color
button and the left mouse button is clicked. The Drawing Point must be visible for this to work,
and this is the case only when the left mouse button is being pressed. Therefore, to select a color,
the user must click on the color. Simply moving the mouse over a color will not select it.

In addition to allowing the user to choose a color by clicking on one of the
application’s 10 color button controls, the application also allows the user to
change pen size by clicking on keyboard keys 1 through 9. To enable support for
different pen sizes, add the following code block to the script, inside and at the
bottom of the script’s loop.

As you can see, these code blocks are organized using nine separate conditional
control blocks, each of which monitors the keyboard looking for a specific key to
be pressed and changing pen size accordingly.

Clearing the Stage

In addition to facilitating drawing using different colors and pen sizes, the
Doodle Drawing application also allows the user to clear the stage at any time to
ready it for a new drawing. The programming logic that allows the user to clear

Summary

the stage to start a new drawing is managed by the Clear sprite in conjunction
with the stage. The process of clearing the stage is initiated whenever the user
clicks on the Clear sprite. When this happens, the following script, which needs
to be added to the Clear sprite, is executed.

As you can see, all that this script does is send a broadcast message of Clear,
indicating that the user wants to clear the stage. This broadcast message serves as
a trigger that initiates the execution of the following script, which must be added
to the stage:

As you can see, this script is very straightforward. It executes a pen code block
that clears off the stage whenever the Clear broadcast message is received.

Step 4: Saving and Executing Your Scratch Project

All right! You now have all of the information needed to create and execute the
Doodle Drawing application. Assuming that you followed along carefully with all of
the instructions that were provided, you should be ready to test your new appli-
cation. If you have not already done so, save your new Scratch application project
and then switch over to Presentation mode and click on the green flag button.

As you work with the Doodle Drawing application, be sure to click on every one
of its buttons to make sure the pen switches its color when drawing. Also,
experiment with each of the application’s line sizes to ensure they are working

properly.

Summary

This chapter’s focus was on teaching you how to work with Scratch’s virtual pen
to draw all kinds of different lines, shapes, and graphics. You learned how to
enable and disable drawing by controlling the pen’s up and down position. You

247

248

Chapter 12 = Drawing Lines and Shapes

learned how to modify the color and pen width and control the level of shading
that is applied. You also learned how to capture a sprite’s costume, use it to
stamp its image on the stage, and clear off any drawing operations from the stage.
Finally, through the development of the Doodle Drawing application, you got to
put all of this new information to practical use.

PARrRT Il

ADVANCED TOPICS

This page intentionally left blank

CHAPTER 13

SHARING YOUR SCRATCH
PROJECTS OVER THE
INTERNET

Scratch’s slogan is “Imagine, Program, Share.” As the slogan implies, sharing is a
big part of Scratch. The Scratch website is specifically designed to facilitate sharing
and to promote the development of a large global community of Scratch pro-
grammers. By sharing ideas and projects with other Scratch programmers, you not
only help others to learn but you increase your own knowledge and experience as
well. This chapter will teach you everything you need to know about how to
upload, manage, and share your Scratch applications on the Scratch website,
helping you to become an active member of Scratch’s global community.

The major topics covered in this chapter include learning how to:

m Register a new account at the Scratch website

Upload your Scratch applications

Delete applications that you have uploaded

Post comments and add tags to your uploaded applications

Create galleries in which you can store and organize your applications

Running Scratch Applications on the Internet

Scratch is all about learning and sharing. The Scratch website (http://
scratch.mit.edu) is specifically designed to facilitate both of these objectives,
making it easy for you to upload and run your Scratch applications online and

251

http://scratch.mit.edu
http://scratch.mit.edu

252

Chapter 13 = Sharing Your Scratch Projects over the Internet

=

L Scnmen | Frapess | rerae wong B) m i P Feem = =)

| sc@wl
=0 g | —
= === We

kcome, {04 | Logout arh

fmaging « program » shan

Hello World Download this Sy
project!
Your browser needs java to view projects. Click to install 3

Java.

| @y [Ty p—— ame rights reserved Project Notes

Love it] Add e my faverites? Add to Gallery Tags
Comments Add Tags
dd & Comment
7 |
Link to this Project
More Projects by [HO4
Figure 13.1

Determining if your browser supports Java so that it can run Scratch applications.

to run and download applications submitted by members of the global Scratch
community.

Note

At the time this book was written, over 125,000 Scratch projects had already been posted on the
Scratch website, providing a wealth of examples that you can download, study, and learn.

To view and run Scratch applications on the Scratch website, you need to use a
web browser that supports Java. As an easy way to determine if Java is installed on
your browser, visit the Scratch website and click on one of the many available
Scratch projects. If the application opens, then Java is installed and working
correctly. However, if you see results similar to those shown in Figure 13.1, Java is
not installed.

If you determine that you need to install Java, you can do so for free by visiting
http://www.java.com/en/download, clicking on the Free Java Download button,
and following the instructions that are provided.

Registering with the Scratch Website

In order to upload your Scratch applications to the Scratch website, you must
first register for a free Scratch account. To do so, go to http://scratch.mit.edu/
signup as shown in Figure 13.2 and fill out the required form.

http://www.java.com/en/download
http://scratch.mit.edu/

Registering with the Scratch Website 253

P e ==
GO = | & hapdiscrtch.mit.edusignup =4[|| p -
S AR | 5 Scratch | Sigeup [-

Qe RATHH
g gt | o S o 0 e —
Create an account

Username |

Password |

Confirm Password |
Birth date e
Gender
Country pd
StatesProvince: [|
City: |]
" mandatory flelds

Brhvacy Policy | Term of ke | Contact Us

Figure 13.2
You must register with the Scratch website before you can upload your applications.

b o e e e |
G’O- T hetpefscratch.mit edulwters TheCaptain] 43 [|| Gocgle b -
W 4R | 5 Sceatch | TheCaptain's Stuff P~ Bl = 8% = rfage~ PTock= i@ &0

: home projects gallerier wpport forum: about my stuff

Q-RAT=H

imagine » program « share | LOEIN o Signup for an account N | N
TheCaptain TheCaptain's Projects
Location:
SR TheCaptain's Favorites
VA |
United States
Mo friends yet.
Galleries
TheCaptain has not created any
Galleries

See more -

Privacy Policy | Terms of Uhe | Contact U

Figure 13.3
Once registered, you can upload applications and create galleries in which to store your applications.

Note
If you are over 18 years of age, you will also be prompted to supply your email address.

Once you have finished filling out the required information, click on the Sign Up
button. A new account will then be created for you, and you will be logged into
the website, as demonstrated in Figure 13.3.

254

Chapter 13 = Sharing Your Scratch Projects over the Internet

Once you have created a new account, you can begin uploading your Scratch
applications. At the time this book was written, the Scratch website placed a
10MB limit on the size of application projects that could be uploaded. The
purpose of this restriction is to ensure that plenty of space is made available to all
members of the Scratch community and to help ensure that upload and
download times are kept to a reasonable level.

Once they are uploaded, you can manage your uploaded Scratch applications by
logging in to the Scratch website using your new account. There is one important
point you need to know: Once uploaded to the Scratch website, there is no way to
restrict or keep private any of your Scratch applications. Everything uploaded is
made available to anyone who visits the website.

Uploading Your Scratch Applications

The first step in sharing a Scratch application is to click on the Share! button
located at the top of the Scratch IDE, displaying the window shown in Figure 13.4.
Begin by keying in your account name and password and then provide a name for
your project. Next, enter any notes that you think other Scratch programmers
visiting the Scratch website will need to know to work with your application.

Your Scratch wabsita login nama:

-Ihe(;wtﬂ'\

Creale accoun L
—i Password:
§“':9' [ssssssss
e \
Project name:
| Tast Brajact
Tage Project notes:
& Animation This project was created by Jerry Lee Ford Jr.
™ At
Aprd 20, 2009
™ Game
7 Music
I Simulation
™ Story
mMore tags:
& Compress sonnds and images oK Cancel

You can provide detailed information about your applications when uploading them.

Uploading Your Scratch Applications

Note

In addition to providing instructions about how to work with your application, you should also use
the Project Notes area to acknowledge the source of any audio or graphic files that you use in
your application.

Scratch also supports an optional tagging feature that you can use to help other
Scratch programmers locate your applications when searching the Scratch
website. By default, Scratch lets you select any of six predefined tags covering the
following categories.

= Animation
m Art

= Game

m Music

= Simulation

m Story

In addition, you can also create as many as four custom tags by supplying
keywords that you think best describe your application and its purpose. Once
you have finished filling out this window, click on the OK button, and the upload
process will begin.

Note

Note the option located at the bottom of the Upload to Scratch Server window. This option is
automatically selected by default. It instructs Scratch to compress any sound and image files that
make up your application before uploading them to the Scratch website. Compressing audio and
image files during upload has no effect on the files stored on your computer. This is in direct
contrast to the compress sounds and compress images commands provided by the Extras
button on the Scratch IDE. These two commands compress any audio and graphic files used in
your application.

Once it is compressed, you cannot uncompress a sound or graphic file, so you should plan on
maintaining an original copy of your media files someplace for safekeeping. Given the ability to
automatically compress sounds and images on the fly when uploading your Scratch applications,
there is very little need for the commands provided on the Extras button.

Once an upload is started, a dialog window similar to the one shown in Figure 13.5
is displayed, allowing you to track the progress of the upload process.

255

256 Chapter 13 = Sharing Your Scratch Projects over the Internet

Upléac:l.ing

Test Project
Datasent. Waiting for response..

Figure 13.5
Scratch keeps you abreast of what is happening as it uploads your applications.

Upload Succeeded!

Your project is novt online at
scratch.mit.adu

oK J

Figure 13.6
You can click on the scratch.mit.edu link to launch your browser and view your uploaded applications.

G@- 2 hetpfscratchumit.edu/users TheCaptain = 4| 2 |l Google A -

S 42| 5 Seratch | TheCaptain's Stuft | =B - 8- ibige s Qlock - @ L0

qr‘n‘hqﬂr‘ﬂ‘ home projects galleries spport forums about my stuff m

jmagine + program « share Login or Signup for an account |[Csaweh |

TheCaptain TheCaptain's Projects
s o Showing: 1
Mechanicsville = .
vA L
United States o
Mo friends yet.

I Test Project

Comments: 0
Gallerie: TheCaptain's Favorites
TheCaptain has not created amy
Galleries

See more b
Privacy Policy | Terms of Lhe | Contact Ly
Figure 13.7

The uploaded application is visible and ready to run online.

One the upload process has completed, the dialog window shown in Figure 13.6
will be displayed.

If you want, you can click on the blue scratch.mit.edu link located in the middle
of the dialog window to automatically open your browser and log yourself into
the home page of the Scratch website, where you will find your uploaded
application waiting on you, as demonstrated in Figure 13.7.

Viewing and Organizing Your Applications Online

Viewing and Organizing Your Applications Online

Any Scratch application projects that you upload to the Scratch website are
stored on your home page on the website, as demonstrated in Figure 13.8.

From here you can run your application, post comments for it, add additional
tags, and create galleries into which to organize your applications. You can also
delete any projects that you have uploaded and view comments posted by other
members of the Scratch community.

Running Your Application

Once they are uploaded, you can view and execute your applications online by
clicking on them. This opens the application and makes it ready for execution, as
demonstrated in Figure 13.9.

Once it is opened, you can interact with and run your application in exactly the
same manner as you did when running it on your local computer. For example,
the green flag and red Stop Everything buttons are both clearly visible in the
upper-right corner of the online stage. Once they are started, you can interact
with Scratch applications using the mouse and keyboard as well.

Adding Comments

You can share additional information about your Scratch application by posting
comments. To do so, scroll down the screen as demonstrated in Figure 13.10 to
expose the Add a Comment entry field.

8 Serateh | My Seult | ThaCaptaim - Windous Internet Explorer ==
O - |7 ropiscchmitedulaser Tracaptain = [4 [| Google 2
@ W Sceatch | My Stuff | TheCaptain fi= B = o oeodbage Gloon~ @ L0

QRATHT

Weicome, TheCaptain | Logout

imagine » program » share el e |

Thelaptain My Projects

No friends yet. My Favorites

Galleries

Figure 13.8
Once logged onto the Scratch website, you can view, execute, and manage all your applications.

257

258 Chapter 13 = Sharing Your Scratch Projects over the Internet

W GRSt Proect] Test Frject = | B bk ege v) Teok w @ 5 B |
I I ") i
ScRATCH
imagine « program s share | Wekome, TheCaptain | Logout ||
. - ' Vo huive 4 messagen a ™
Test ﬁm Download this E
"’.3' L
Downlnad “Tent Project” (oo 1peite
and no scripts) and open it
Eich
| Praject Notes
Thin project was created by
Jarry Lew Ford, Jr. April 39,
008

Erebed
Emm—«m duy, 3 hours 2o £ 50me rights reserved oo o 1

Figure 13.9
Your online application can be run in exactly the same way you run it on your computer.

Download Tast Projfect”fooe speite
e o seriphs) ded open it b
Soratch
.| Project Notes

This profect was created by

Jarry Low Ford, Jr_ april 30,
2008

(%

.s', [=Y
i Tags
A Tags

- \

Embed
Discoree 2%

thcq_r_mmiuu minutes ago OB gems righes etrarved
2 views Mare Projacts by
oy S — TheCaptain
grl"l(! Add to my favorites? Addtoagallery disable

Cammanting
and tagging
= Comments

Add a Comment

Figure 13.10
Adding comments to your Scratch application.

Viewing and Organizing Your Applications Online

Link to this Project

ot

More Projects by
TheCaptain

Figure 13.11
Viewing the comments posted about your application.

You can enter any text that you want into this field and then click on the Add
button to post your comments. Once posted, your comments, as well as any
comments that other members of the Scratch community post about your
application, are visible. For example, Figure 13.11 demonstrates how comments
look once posted.

As you can see, comments are posted at the bottom of the web page, as is the
account name of the individuals who post them.

Adding Tags
In addition to adding tags to your application projects when uploading them,

you can also add them online. As demonstrated in Figure 13.12, tags are dis-
played to the right of your application once it has been opened.

You can add new tags, one at a time, by keying them in to the Add Tags field and
then clicking on the Add button. You can also delete any tag that you no longer
consider useful by clicking on the [x] characters located just to the right of the tag.

259

260

Chapter 13 = Sharing Your Scratch Projects over the Internet

e s=-_-e. Teit Propect - Welom =
6D ©. romoscntchmt eduproject TheCaptun1saizy
| File Vow Foestes Teoh Help

Wr G| Scrsteh | Project]| Test Praject B =B lhages Dleohs P60

UHQ ‘,l\rpﬁ‘r_] hame profects galleries suppert forums about my stulf
g« program » sre. | Wekome, TheCaptin | Logout — |

ou have 4 merita

Test Project Download this F=iEmrs
project!

Doweload st Project”fome sprite
ancf na serlpts) and open it i

Project Hotes

Link to this Project
Embed
i shared it 5 days, 16 hours ago “ome rights reserved O e, 71 &

3 views, 1 tagger, in 1 gallery

. I Mare Projects by
TheCaptain
Add o my favorites? Addto a gallery

Figure 13.12
Adding tags to your applications makes them easier to find.

Creating Galleries

As you begin to upload your Scratch applications, you may find it helpful to
organize them into different galleries. A gallery is a collection of Scratch appli-
cations. Typically, most Scratch programmers group their applications into
related collections. For example, you may create one gallery to organize your
games and a separate gallery for your other applications.

To create a gallery, go to your home page and scroll down and click on the Create
link located in the Galleries section on the left-hand side of the web page. This
will display the Create New Gallery page, as shown in Figure 13.13.

To create a gallery, you provide it with a name and description, and you specify who
can add projects to it. You choices of who can add projects to your gallery include:

= Only Me
m My Friends

= Everyone

You can access your gallery by clicking on its link, which automatically adds
a Galleries area to the bottom-left side of the page, as demonstrated in Figure 13.14.

Viewing and Organizing Your Applications Online

o e =]

L) - [rmirscncnme ssurgasenes/ e w42 x |{ Googee P
So G| 3 oy _ Bir B w e G n B B
ScRATCH
magine « program « hare | Wekome, TheCaptain | Logous [=
Create New Gallery Cudelines
Hame [

Plaise cnly uploud content that B
—_— appropeiate according to cur Terms
Description] of Use -

Who can add L
prejecta? My Frigedts
€ Everpo

Friepcy Policy | Terms of Lhe | Contact Uy

Figure 13.13
Creating a new gallery where you can store your Scratch applications.

& oo : T [| oy

W GE | T Scratch [My S | TheCaptan } G- B oosh il Glenr @ BT
YeRATHH
imaging « program « sharw
TheCaptsin My Projects
s [ez e | o
“delete relected projects |
Meehan kot ille
v B e
e Tt Propect
You have O SRS ON YOUT IGROME S | ot 1

i day e Lt

Ho friends yet. My Favorites
emave aeleeted Frvarites
Galleries
E Basic Applicatio
D you want s browna or craste &
gatery!
See mare

Priency Peey | Teoms of Use | Contaet Uy

Figure 13.14
You can access your new gallery by clicking on the link at the bottom of the web page.

You can add a Scratch application to one of your galleries by opening the
application and then clicking on the Add to a Gallery link located just below the
stage area. When you do this, the web page expands to include a Where Do You
Want to Add section, as demonstrated in Figure 13.15.

261

262

Chapter 13 = Sharing Your Scratch Projects over the Internet

an13111 v 49| x | Google 2 -

Ge Sanatch [Frapect | Test Fropmst Biw B~ b hreges Gess s @ B0
ARATHH -

Wiekcome, TheCaptain | Legeut

imagire « program « share

Test Project

Link to this Project
O A
1 views Mare Projects by
hack TheCaptain
@ baveit] Add to my faverites] Add to a gallery
Where do you want to add Test Project?
O
Figure 13.15

Adding an application to a gallery.

This section displays a list of all your galleries. To add the application to a gallery,
select the check box control to the left of the gallery’s name.

You can display a listing of all of the applications stored in your gallery by
opening the gallery. For example, the gallery shown in Figure 13.16 currently has
a single application stored in it.

In addition to viewing your own gallery, you can browse any gallery on the
Scratch website by clicking on the Galleries button located at the top of any
Scratch web page. In response, a list of galleries is displayed. By default,
10 galleries are displayed at a time, and you can navigate through the entire list
using the navigation controls located on the right-hand side of the page, as
demonstrated in Figure 13.17.

The most recently created galleries are displayed first. However, by clicking on
the buttons located near the top of the page, you can display galleries based on
which ones have the most projects, or you can view featured galleries.

Viewing and Organizing Your Applications Online

ScRATCH

imagine « program « thare

Wekcome, TheCaptain | Logout | E— T

¥ou have 4 meviages
—_——
Mewest Projects in Basic Applications
Sort by: greater | fitle | creation daie | addition date
Showing: 1
B saprorta
shiete picire

g.

Figure 13.16
Managing your gallery.

- 1-"%mn-.—

ScRATCH

imagion « program o shace | Welome, TheCaptain | Logout | — T ‘N

Yoo have 4 meviaser

Explore or create a new gallery

Shgwing: 1418 of 6921
PIZI2I41%161 21801682

Created: & misstes

| This. g; a of simple Scratch agplications.
Mumber of Projects: 1

—— - coatil
Created: 1 weeh, & Siy3
| Dencription: Add al of your best animations and | wil bell which cne | 5o the most somtimer.
Mumber of Projects: 18
, sonic and mario gallery

Created: 3 week, I days

Description: somict|! and mariol 12 (| will 18l you whae you can 334 project] PLEASITEIT ADD YOUR
| SOMEC DR MARKD PROJECTS PLEASEEEEEEE on e gallery: -Shory

Fred1r
Number of Projects: 10

1 The fallan: N

.

Figure 13.17
Exploring application galleries.

263

264

Chapter 13 = Sharing Your Scratch Projects over the Internet

Removing Projects

If you decide that you want to remove any of the applications you have uploaded
to the Scratch website, you may do so by displaying your list of projects, selecting
one or more using the application’s check box control (located just underneath it),
and then clicking on the Delete Selected Project button, as shown in
Figure 13.18.

Updating Your Projects

If after uploading one of your Scratch applications to the Scratch website you
decide to make changes to it that you would like to share, you may do so by
simply uploading it again, using the exact same name that you used to upload it
the first time. If you want to keep the original copy of the application intact on
the Scratch website, then you will need to assign a different name to the updated
version of your application before you upload it.

Other Scratch Website Features

The Scratch website supports many other features related to the sharing of
Scratch application projects that have not been discussed in this chapter but

78 Scmch | Wy 50| ToeCaptin - Wi ttmesExplees e
@k_:" hitp/scratch.me e’ usen TheCaptan x »
o Scrach | My Seut | TheCaptam BB ==t Gecn= P50
O~RAT T home projects galleries support forums sbout my stulf g
imaging + program « share Weicome, TheCaptain | Logout el
TheCaptain My Projects
Harhae !
- (= —
Ignore List —
o b § asers cn i
Mo friends yet. My Favorites
Galleries
o Bave any Gl
o0 mol
Figure 13.18

Deleting an application that you have uploaded to the Scratch website.

Downloading Other People’s Projects

which you may want to investigate and learn more about. For example, you can
change your personal profile information by uploading a picture to represent
who you are. You can also change your password. As you browse the website, you
can add applications that you really like to a favorites list, making them easy to
return to and find again.

You can delete your galleries by clicking on the Delete This Gallery button when
viewing one of your galleries. You can add projects that you have uploaded into
galleries by opening the gallery that you want to place the application into and
then clicking on the Add My Project button. This displays a list of your projects,
allowing you to select which ones you want to move into the current gallery. You
can even upload a custom graphic from your desktop to be used to represent
your gallery.

Downloading Other People’s Projects

In addition to allowing you to upload and share your Scratch application projects
with Scratch programmers from around the world, the Scratch website also offers
access to all of the application projects that other programmers have uploaded.
As such, you have instant access to a virtually unlimited number of Scratch
applications, all of which you can view, run, and if you want, download. Once it
is downloaded, you can study the application and see how it works. If you have
ideas for making it better, you can use it as the basis for creating your own version
of the application.

Downloading a Scratch application project is easy. First, locate and open the
application that you want to download, and then look for its download link,
located in the upper-right corner of the web page, as demonstrated in Figure 13.19.

Once you click on a Scratch project’s Download link, a File Download window is
displayed, asking you what you want to do. Your choices are to open a copy of the
application into Scratch on your local computer or to download the application
as a file to your computer, allowing to you open and work with it later.

Note

If you elect to open an application project using Scratch, you can still save a copy of it on your
computer using Scratch’s Save As button. If you elect to download the application project as a file,
the file that is downloaded can then be easily identified by its name, the familiar Scratch cat icon,
and its .sb file extension.

265

266 Chapter 13 = Sharing Your Scratch Projects over the Internet

@U' T, http/scratch. mit e prosects/ TheCaptan/1 34111 v | 4| % || Google

$8 80| T Scrmch | Peagect| Test Propect Biw B~ b hreee e @ B0
“F“Q‘ATF‘T—T home project: pulleries support foruma sbout my stuff —

Wekcome, TheCaptain | Logout

imagine + program « share

Test Project

Nie
L=

=
Link to this Praject
) =.‘-:I--I'\‘- FITE)
S More Projects by
Chack fo a2t TheCaptain
 Love n? Add to my favorites? Add 1o a gallery
Figure 13.19

Downloading an application from the Scratch website.

Summary

This chapter provided instruction on how to upload your Scratch applications to
the Scratch website. Doing so allows you to share your work with other members
of the Scratch global community. The Scratch website places thousands of
applications at your fingertips, allowing you to not only run them but to
download them and see how they work. Through the exchange of application
projects, you can become a much more knowledgable and effective programmer,
leveraging not only your own work but also the work and ideas of others.

CHAPTER 14 -

COLLECTING EXTERNAL
INPUT USING A
ScrRATCH BOARD

In addition to using Scratch to develop all kinds of games and applications and
interacting with those games and applications using the mouse and keyboard,
Scratch is also designed to interact with a special piece of hardware known as a
Scratch Board. Using a Scratch Board, you can create applications that are
capable of sensing and collecting real-world input. Scratch Boards come with a
number of built-in controls, including a slider, a button, and four pairs of
alligator clips, as well as two sensors that allow it to capture light and sound data.
This chapter will teach you everything you need to know to work with a Scratch
Board, including how to install and programmatically interact with it.

The major topics covered in this chapter include:
m Learning how to purchase a Scratch Board

m Downloading and installing Scratch Board software

m Using sensing code blocks to programmatically interact with a Scratch
Board

Keeping an eye on Scratch Board data using different types of monitors

267

268

Chapter 14 = Collecting External Input Using a Scratch Board

Interacting with the Real World

A Scratch Board is a specialized piece of hardware, shown in Figure 14.1, which
you can purchase directly from the Scratch website and attach to your com-
puter via a USB connection. Once a Scratch Board is connected to your computer,
your Scratch applications can begin collecting, processing, and responding to
different types of real-world data, collected by the Scratch Board’s built-in set of
sensors and controls.

Scratch Boards come equipped with a number of controls and sensors; their
functions are outlined here:

Light
Sensor

Slider

Slider. Detects the current position of the Scratch Board’s slider control.

Light Sensor. Detects the amount of light that is currently visible through
the Scratch Board’s light sensor.

Button. Returns a value of true or false, depending on whether the Scratch
Board’s button is being pressed.

Sound Sensor. Detects the loudness of sounds through the Scratch Board’s
sound sensor.

Alligator Clips. Provides a measurement of the electrical resistance in a
circuit.

Alligator
Clips

Button

Sound
Sensor

Figure 14.1
Scratch Boards allow your applications to incorporate external input into your applications.

Installing Your Scratch Board

The rest of this chapter is dedicated to teaching you how to install and interact
with a Scratch Board. In doing so, you will be able to incorporate a whole new
range of input into your applications, using for example variations of light and
sound to control the execution.

Tip

In addition to the information provided in this chapter, you can learn more about Scratch Boards
by visiting http://scratch.wik.is/Support/Scratch_Board. Among the items you will find on this web
page is a link to a small Getting Started with Scratch Boards PDF manual, which provides a
number of excellent example scripts that demonstrate how to interact with and use input col-
lected and reported by Scratch Boards.

Buying a Scratch Board

Scratch Boards can only be purchased from the Scratch website. At the time this
book was written, the price of a Scratch Board was $25, along with an additional
$5 charge for shipping and handling. To verify the current price of a Scratch
Board, visit http://scratch.wik.is/Support/Scratch_Board/Pricing_information.
To order a Scratch Board, go to https://scratch.media.mit.edu/pages/scratchboard-
purchase and fill out the required form.

Installing Your Scratch Board

Installing a Scratch Board on your computer is a relatively quick and easy process
and begins with downloading the software driver. Two different types of software
driver downloads are available, one for Microsoft Windows and one for Mac OS
X. To download the drivers for your computer, go to http://scratch.mit.edu/
pages/scratchboardsetup and click on one of the following links (Windows Vista
users can skip this step because your computer should automatically install the
needed software driver):

® Windows XP (and older) Driver
m Mac OS X Driver

Once you have downloaded the appropriate software driver for your computer,
you need to install it. On Microsoft Windows this means extracting the instal-
lation program from the Zip file, double-clicking on it, and then following the
instructions that are provided.

269

http://scratch.wik.is/Support/Scratch_Board
http://scratch.wik.is/Support/Scratch_Board/Pricing_information
https://scratch.media.mit.edu/pages/scratchboardpurchase
https://scratch.media.mit.edu/pages/scratchboardpurchase
http://scratch.mit.edu/pages/scratchboardsetup
http://scratch.mit.edu/pages/scratchboardsetup

270

Chapter 14 = Collecting External Input Using a Scratch Board

For Mac OS X users, installing Scratch’s software drivers involves opening the file
that is downloaded and then double-clicking on the .dmg file that is stored
inside. This displays a .pkg program, which when double-clicked executes the
driver installation process. Click on Continue to begin the installation process
and then follow the instructions that are presented.

Once you have installed the software driver on your computer, connect the USB
portion of the cable that came with your Scratch Board to your computer’s USB
port and then connect the serial portion of the cable to your Scratch Board. At
this point your Scratch Board should be ready to use.

Using the Sensor Block to Interact with
Your Scratch Board

In order to programmatically interact with a Scratch Board, you need to work
with the two sensing code blocks shown in Figure 14.2.

The first code block shown in Figure 14.2 returns a range of data, from 1 to 100,
for the selected Scratch Board sensor. In addition, you can select this code block’s
check box to enable the display of a monitor on the stage, allowing you to keep
track of the data that the sensor is returning. This code block works with the
slider, light, sound, and all four of the resistance controls (alligator clips).

The second code block shown in Figure 14.2 returns a value of true or false,
depending on whether the Scratch Board’s button control has been pressed or
one of the resistance controls has been used to establish an electrical connection
(the alligator clips are connected to one another).

Examples of how to work with both of these sensing code blocks to receive data
collected by each of the Scratch Board’s sensors and controls are provided
throughout the rest of this book.

Collecting Input Using the Slider Control

In order to work with the Scratch Board’s slider control, you must use the first
sensing code block shown in Figure 14.2. This means dragging and dropping an

“sensor butt

Figure 14.2
Access to a Scratch Board is provided through these two sensing code blocks.

Using the Sensor Block to Interact with Your Scratch Board

Figure 14.3
The speed at which the fan spins will be controlled by the Scratch Board's slider control.

instance of the code block into another control, where it can be used to provide
input; then select Slider from the list of choices displayed in the control’s drop-
down list.

As an example of how to work with the control, let’s create a new Scratch
application that emulates a virtual fan. To do this, you will create a new appli-
cation and then import the sprite shown in Figure 14.3 into it. You will find a
copy of this spite on the book’s companion CD-ROM. You will also need to
remove the default Cat sprite.

Once added to your application, select the sprite and then add the following
script to it. As you can see, this script places the sprite representing a fan in the
middle of the stage and then uses a loop to retrieve a continuous feed of data
from the Scratch Board’s slider control. Using this data collected from the
Scratch Board as input, a motion block is used to rotate the sprite.

go tox: @ v: @

The sprite has been set up so that its rotational center is directly in the center of
the black circle in the middle of the sprite. Moving the slider by a small amount
will make the fan begin to slowly spin. Moving the slider control by a larger
amount will increase the speed at which the fan spins. Using a similar approach,
you can use a Scratch Board as an input device for all kinds of Scratch appli-
cations. For example, you might use it as a means of controlling a paddle in a
Breakout-style game or to control the assignment of data to a variable, which in
turn is used to control an application’s operation. The possibilities are endless.

271

272

Chapter 14 = Collecting External Input Using a Scratch Board

Using the Button Control to Initiate Action

In order to work with the Scratch Board’s button control, you must use the first
sensing code block shown in Figure 14.2. Using this code block, you can
determine whether the Scratch Board’s button control is being pressed. As an
example, let’s create another application. Begin by removing the default Cat
sprite and then click on the Choose New Sprite from File button, drill down into
the Things folder, select the basketball sprite, and click on OK.

Once it is added, select the basketball sprite and add the following script to it:

go to x: @ yv: @

glide {5 sers to v @ y: GCD
glida @3 soce to = @y: @

As you can see, this script begins by positioning the sprite at the center of the
stage. It then starts a loop to repeatedly execute a conditional code block that
checks to see if the Scratch Board’s button is being pressed. If this is the case, the
statements located inside the condition code block are executed. As a result, the
image of the basketball is made to bounce. Figure 14.4 depicts how the basketball
looks as it begins its upward bounce.

The basketball will repeatedly bounce for as long as the Scratch Board’s button is
being pressed and will stop bouncing as soon as the button is released. Using the
previous example as a starting point, you should be able to use a Scratch Board’s
button control as an input device for all kinds of Scratch applications. For
example, you might use it in place of the mouse button as a means of controlling
when to shoot a missile in a Space Invaders-style game.

Reacting to Light

In addition to the slider and button control, you can retrieve input from the light
sensor located on your Scratch Board to provide input to your applications. You

@

& @

Figure 14.4
Using the Scratch Board's button to control the bouncing of a virtual basketball.

Using the Sensor Block to Interact with Your Scratch Board

can use either of Scratch’s two sensing code blocks to interact with the light
sensor. To get a better feel of how to work with the light sensor, let’s modify the
previous application so that it responds to a change in light in place of the Scratch
Board’s button control. To do so, modify the application’s script as shown here.

glide @3 seca to x: @ y: G
alide () secs to x: @ v: @

As you can see, the script has been redesigned so that it only bounces the bas-
ketball when the Scratch Board’s light sensor returns a value of 0 (total darkness).
To test out the execution of this script, place your hand over the Scratch Board so
that it blocks out the light. When you do, the basketball should start bouncing.
Remove your hand so that the Scratch Board can detect some light, and the
basketball will stop bouncing.

Using this example as a starting point, you could create a Scratch application that
performs a certain task only when the lights have been turned off or on. You
might also use your Scratch Board as the basis for creating an alarm clock that
awakens you when the sun comes up.

Responding to Sound

In addition to providing your application with data based on the amount of light
it is able to detect, your Scratch Board can also detect variations in the loudness
of sounds. For example, you could easily modify the script belonging to the
application that you have been experimenting with to work with sound in place
of light.

glide [sers to v @ y: D

glida @B sace to = @ y: @

As redesigned, the script will now bounce the basketball only when the Scratch
Board detects a relatively loud noise in the room. The sound sensor returns a
range of numbers from 1 to 100, where 0 represents total silence, and 100
represents maximum volume. To see how this change affects your application,

273

274

Chapter 14 = Collecting External Input Using a Scratch Board

start your application and make a little noise. If the basketball does not move,
make another noise, this time a little louder. Keep going until you make a noise
that is loud enough to trigger the bouncing of the basketball.

Note

The sensing code block shown in the preceding example operates much like the sensing code
block shown here.

Unlike this code block, which reports on the loudness of the computer’s microphone, the sensing
code block used in the example retrieves its data directly from the Scratch Board's microphone.

Using sound as a trigger for script execution, you could, for example, create and
execute an application that plays an alarm whenever it detects someone in your
room, warning him that his presence has been detected, thus creating your own
virtual watch dog.

Measuring Electrical Resistance

In addition to working with the Scratch Board’s slider, button, light sensor, and
sound sensor, the Scratch Board also comes equipped with four sets of alligator
clips, which you can attach to the bottom of the Scratch Board. Each set of
alligator clips represents an individual sensor, which you can use to provide your
applications with input based on the strength of the electrical resistance in any
circuit you set up.

As an example of how you might work with an alligator clip, let’s modify the
script for the application that you have been experimenting with, as shown here:

glide {5} secs to x @y
glide @5 sers to v @ y: @

With this modified script now in place, you must touch both ends of the alligator
clips together in order to make the basketball bounce. To test how well different
materials conduct electricity, you could attach both ends of the alligator clips to
different objects to see if enough current passes through to make the basketball

Using the Sensor Block to Interact with Your Scratch Board

bounce. With access to four separate sets of alligator clips, you can create all sorts
of different tests and even run them all at once.

Keeping a Watchful Eye on Sensor Data

Scratch allows you to display individual monitors for each of the different types
of sensor controls supported by either of the two sensing code blocks that work
with the Scratch Board. To do so, click on the Sensing button located at the top of
the blocks palette, then click on the drop-down list located in the sensing code
block you plan on working with and select the sensor that you want to keep an
eye on. Next, select the check box located just to the left of the code block. A
monitor for the selected Scratch Board sensor will then appear on the stage. If
you want to display additional monitors, you may do so by selecting the code
block’s drop-down list again to select a different sensor. You will have to select
the block’s check box again. Using this approach, you can display a monitor for as
many of the Scratch Board’s sensors as you want, as demonstrated in Figure 14.5.

To disable the display of any monitor that you enable, you must perform the
procedure outlined above in reverse order to clear out the check box for each
sensor. A quicker and easier way of keeping an eye on the data being supplied by
multiple sensors is to enable the display of the Scratch Board Watcher, as shown
in Figure 14.6.

To enable the display of the Scratch Board Watcher, right-click on the sensing
code block that you plan to use and select Show Scratch Board Watcher from the

|\.sllder sensor value Y
(_I’iﬂlt sensor value m]
[sumd sensor value m

| rasictanca-f cansor valua ETI |

Figure 14.5
Displaying individual monitors to report on different Scratch Board sensors.

275

276

Chapter 14 = Collecting External Input Using a Scratch Board

| comr e
off

Slider TN
Lisht @D
Sound TN
Button (I

A

[o |
B o |
c [o |
D [o |
—

Figure 14.6
The Scratch Board Watcher lets you keep track of all of the data being supplied by your Scratch Board.

popup menu that is displayed. When you are done with the Scratch Board
Watcher, you can remove it from the stage by right-clicking on it and selecting
Hide from the popup menu.

Summary

In this chapter, you learned all about Scratch Boards. This included learning how
to purchase and install them. You learned how to programmatically interact with
them using sensing code blocks and saw examples of how to work with all of the
Scratch Board’s controls and sensors. These examples included the creation of
scripts that can react to changes in light and sound level as well as to button
presses, slider bar movement, and changes in electrical current. This chapter also
demonstrated how to work with different monitors that allow you to keep track
of the data being collected and reported by your Scratch Board.

CHAPTER 15 -

FINDING AND FIXING
PROGRAM ERRORS

Compared to most programming languages, Scratch is less prone to many types
of programming errors, often referred to as bugs. As a programmer, your job is to
seek out and remove all of the programming bugs from your applications and to
ensure that they operate as they are supposed to. That’s where this chapter comes
in. By the time you are done reading it, you will have a solid understanding of
the types of errors that Scratch is susceptible to and the basic steps involved in
tracking down and fixing them. In addition, you will learn about different
resources that you can turn to in order to get help.

The major topics covered in this chapter include:

m Understanding the differences between syntax, logical, and run-time errors
m Learning how to run applications in single stepping mode

Accessing code block help

Getting help from the Scratch global community

Dealing with Application Errors

Program errors, sometimes referred to as bugs, are a programmer’s number one
problem. Errors can occur for a number of different reasons and can cause your
applications to misbehave or even prevent them from executing at all. As your
projects inevitably get larger and more complex, the possibility and frequency of
errors also increase. That’s just the way it is.

277

278

Chapter 15 = Finding and Fixing Program Errors

The goal of this chapter is to help you gain an understanding of the different
types of errors that you will run into and provide you with guidance on how to go
about locating and eliminating them from your applications. Some errors are
easy to find, especially in small scripts, while others can be quite challenging to
locate and often can only be found through intense testing and debugging.

Fortunately, there are steps that you can take to reduce the number of errors that
occur in your applications. For starters, take a little extra time to plan out the
design of your applications rather than making things up as you go along.
Another important step is to create your application scripts a few code blocks at a
time, frequently testing as you go along, rather than waiting until your entire
application has been built to see how things work. In addition, you should set
aside a little extra time at the end of the development process just for testing your
applications and making sure that they not only meet your expectations but do
so without generating any errors.

In addition to the programming practices discussed above, there are a number of
other steps that you can take to make sure your Scratch applications work like
you want them to. These steps include:

m Taking a little extra time to carefully design and lay out your application’s
interface

» Ensuring that you provide clear instructions on how to properly work with
your application

m Creating descriptive names for all application variables

m Renaming all the sprites, sounds, and costumes used in your application to
make them more intuitive to work with

m Breaking down programming logic into a number of manageable small
scripts as opposed to a few really large ones

Unfortunately, no matter how much you try, you can never totally avoid all of the
different types of errors that Scratch applications are susceptible to. Broadly speaking,
most programming languages are susceptible to the following types of errors:

m Syntax errors
m Logical errors

m Run-time errors

Each of these three types of errors is discussed in the sections that follow.

Dealing with Application Errors

Understanding Syntax Errors

One of the things that makes Scratch unique among programming languages
is the way it prevents syntax errors. A syntax error is an error that occurs when
a programmer fails to write code statements in a manner that follows the
syntax rules specified by the programming language. Scratch code blocks are
designed to fit together in logical ways like pieces in a puzzle. Scratch only
allows you to snap together blocks in ways that make syntactic sense. As a
result, Scratch eliminates syntax errors that proliferate in other programming
languages.

Keeping an Eye Out for Logical Errors

One category of errors you need to worry about regardless of the programming
language you are working with is logical errors. A logical error is an error that
occurs because of a mistake on your part in the implementation of the pro-
gramming logic you applied to solving a problem or performing task. For
example, suppose you had an application that needed to add two numbers
together, but when you assembled the programming logic you accidentally
subtracted one number from another. As a result, your application will not run
correctly. From Scratch’s perspective, everything would be fine, since there was
technically no problem with the logic you implemented. As soon as you see that
the results tallied by the application are not correct, you should immediately
suspect that you have a logical error to debug.

As another example of a logical error, consider the following pair of scripts, which
belong to an application that uses the default Cat sprite to display text messages
that are supposed to count from 1 to 5.

Watch ma count to 5. LT = RN

dumtmntwbra.
sav (Counter| for @ secs

279

280

Chapter 15 = Finding and Fixing Program Errors

Both scripts begin their execution when the green flag button is clicked. When
this happens, the first script assigns a starting value of 0 to a variable named
Counter and then goes into a loop that has been set up to wait until the value of
Counter is equal to 5. When this occurs, the sprite is made to display a message,
and then all script activity within the sprite is halted.

The second script is responsible for making the sprite count from 1 to 5,
incrementing the value of Counter each time the sprite says a number. If you were
to run this example, you would see that as it is currently written, it has a logical
error. Specifically, the second script loop was accidentally set up to run four times
instead of five times. As a result, the sprite only counts from 1 to 4, and since the
value of Counter never reaches 5, the first script gets stuck in its loop. Only by
fixing the loop in the second script (so that it executes five times) can this logical
error be fixed.

The best way to identify logical errors is to take a little extra time to carefully plan
out the design of your applications and to test them extensively, ensuring that
they run exactly as you expect them to. If, despite your best efforts, a logical error
manages to make its way into your program logic, all hope is not lost. Using the
debugging techniques discussed later in this chapter, you should be able to track
down and eliminate all of the errors from your Scratch applications.

Tracking Down Run-Time Errors

A third category of errors that plagues all programming languages, including
Scratch, is run-time errors. A run-time error is an error that occurs when a Scratch
script attempts to perform an illegal action. Scratch automatically identifies run-
time errors when they occur by surrounding the script where the error occurred
with a red outline. Depending on how your applications are designed, it is entirely
possible that you might be able to run them over and over again without ever
executing the script in the application where a run-time error lies. This is why it is
so important that you thoroughly test the execution of every script in your
applications. Failure to do so leaves you open to run-time errors.

As an example of what a run-time error looks like when reported by Scratch, take
a look at the following script.

et Total to @/ @'

Debugging Your Scratch Applications

Here, Scratch has flagged the script as having a run-time error. The reason for the
error resides in the Variable code block. As you can see, it includes an embedded
Numbers block that attempts to divide 10 by 0. However, the division of 10 by 0 is
an illegal action in all modern programming languages, including Scratch.

The unfortunate thing about run-time errors is that if you do not identify and
eliminate them during application development, you can bet that your users will
find them for you, which is the last thing any programmer wants to happen.

Debugging Your Scratch Applications

No matter how carefully you plan out your Scratch scripts, somewhere along the
line you are going to run into errors. As previously demonstrated, Scratch helps
you locate and identify scripts that contain run-time errors, and while your
Scratch applications are not subject to syntax errors, logical errors can be par-
ticularly difficult to track down and identify. Fortunately, there are a number of
debugging techniques that you can employ to help you track down and eliminate
problems within your application’s scripts.

Basic Debugging Techniques

One of the challenges in debugging a Scratch application is to identify when
things are happening. Scratch helps simplify this challenge a bit by highlighting
scripts when they execute. However, the exact activity occurring within a given
script can be hard to identify. This makes it difficult to determine if things are
occurring in both the order and manner that you intend for them to.

Making a Little Noise

Once way of figuring out what is happening within an application is to embed
code blocks inside your scripts for the purpose of notifying you when things
occur. For example, using a sound block you could play a note every time a
particular variable is updated during the execution of your script. Using this
sound as a means of keeping track of updates, you could verify that a variable’s
value is being properly set when testing the application. If during testing you do
not hear the sound played, then you know that something is wrong. If the
variable that you are watching is modified in more than one place within a script,
or if it can be modified by different scripts, you might want to play different notes
at each location where variable modifications occur. Then by simply keeping

281

282

Chapter 15 = Finding and Fixing Program Errors

your ears open when testing the execution of your application, you may be able
to track down the script or area where the problem lies.

Display Informative Messages

Of course, you do not have to work with sound blocks. If you prefer to, you can
work with looks blocks instead. Looks blocks provide the added benefit of being
able to display text, which you can use as marker within script execution to let you
identify exactly when certain parts of a script are executing. For example, you
might begin each script with a looks block that displays a text message announcing
that the script is executing and end each script by displaying a closing message. You
might embed additional looks blocks at key locations within your script to notify
when specific things happen. If, for example, when testing an application, a par-
ticular text message is not displayed when you expect it to be, then you will know
where to begin looking for the source of the problem.

Tip

If you think that a variable is not being set correctly during script execution, you can enable the
display of a monitor so that you can keep your eye on the variable's assigned value when testing
your application. However, if your application utilizes a larger number of variables, displaying lots
of monitors can get in the way of things. As an alternative, you can keep an eye on the value of a
variable by displaying it inside a looks blocks, as demonstrated in Figure 15.1.

say | Total for secs

Figure 15.1
Using a looks block to report on a variable's assigned value.

Although not obvious because of the shape of some looks blocks' input fields, you can use them
as shown above to display a variable’s value.

Slowing Things Down

Because of the speed at which things tend to happen in many applications, it can be
difficult to keep track of what is going on. If you are using looks blocks to display
helpful text messages, you can slow things down by pausing script execution for a
specified number of seconds. Alternatively, you can also slow things down by using
the control block shown in Figure 15.2 to pause script execution.

By temporarily halting a script, you can give yourself time to check on variable
values to see if they have been correctly set and poke around and look at the

Debugging Your Scratch Applications 283

Figure 15.2
You can use this code block to slow down script execution.

Figure 15.3
Testing a script by breaking it down into smaller parts.

activity of other scripts. This is especially helpful in applications made up of
multiple scripts and scripts where broadcast messages and variables are used to
coordinate the execution of script activity.

Testing Individual Scripts

When testing your Scratch applications, it is important that you make sure that
every script gets executed. Otherwise, you may miss out on finding a potential
problem. To make sure this happens, take time to test all of the functionality and
features of your applications. One easy way to do this is to double-click on every
script in your application and observe the effects of its execution.

Breaking Things Down into Smaller Pieces

Really large scripts can be challenging to test because of their size and inherent
complexity. One easy way of getting around this challenge is to break these scripts
down into smaller parts when individually testing them. As an example of how
you might do this, take a look at Figure 15.3.

284

Chapter 15 = Finding and Fixing Program Errors

By breaking down a script like the one in Figure 15.3 into multiple parts, you can
double-click on each part and examine its effects on your application. Should
something unexpected occur, you will know exactly which part of your script to
focus on to find the source of an application’s problem.

Making Liberal Use of Monitors

Another important source of information at your disposal that you can use when
debugging your application is code block monitors. By temporarily enabling
the display of monitors when testing your applications, you can keep track of key
data used by your applications. Once you are done testing, you can disable the
display of any monitors that you do not need to display as part of the normal
operation of the application.

Running Your Application in Single Stepping Mode

In addition to all of the debugging techniques discussed above, Scratch provides
one additional debugging tool, known as single stepping. When you run an
application using single stepping mode, Scratch slows down the speed at which
your application executes, making it easier for you to monitor execution flow.

Normally the Scratch IDE highlights an entire script with a white outline when it
executes. But when run in single stepping mode, Scratch also highlights individual
code blocks as they execute. As your applications execute in single stepping mode,
you can monitor their execution flow to determine if things are executing in
the proper order.

Note

You can control the speed at which your application executes by pressing the Shift key and left-
clicking on the Extras button, then clicking on Set Single Stepping from the popup menu that
appears. This displays a list of options to control single stepping execution speed. These choices
include:

m Turbo Speed
m Normal
m Flash blocks (fast)

m Flash blocks (slow)

Debugging Your Scratch Applications

To develop a better understanding of how single stepping works, consider the
following series of examples, which demonstrate what you can expect to see when
running an application in single stepping mode.

To turn on single stepping mode, click on the Extras button located at the top of
the IDE and then click on the Start Single Stepping option from the popup menu
that appears. Once single stepping has been enabled, go ahead and start running
your application. As the application executes, two things become immediately
obvious: Things are occurring more slowly, and in addition to highlighting each
script with a white outline as it executes, Scratch now highlights individual code
blocks as they execute.

Below is an example of a script that has begun executing, as indicated by the
white outline that surrounds the script. Within the script, you can see that the
second code block is the code block that is currently executing because Scratch
has highlighted it using a yellow color.

Normally, Scratch runs scripts so quickly that it would not be practical to try
to monitor the execution of individual code blocks. However, single step-
ping slows things down enough to let you do so. For example, as shown
below, you can clearly see that the fourth code block is now being executed.
If you have a monitor for the Counter variable displayed on the stage, you
would be able to confirm that the code block has correctly modified the
variable value.

285

286

Chapter 15 = Finding and Fixing Program Errors

broadcast | Start Muvie

Within a few moments, the script enters into a loop and begins the repeated
execution of two code blocks. Below you can see how the script looks when the
first of these two code blocks is executed. As you can see, this code block rotates
its sprite by 10 degrees. You should be able to observe this movement by
watching the sprite on the stage.

bFGadcast | Start Movie |

After a brief pause, the second of the two code blocks in the loop executes, as
shown here.

Watch Out when Removing Sounds and Sprites

Scratch continues to highlight code blocks one at a time for as long as
the script executes, giving you the opportunity to validate that the script is
executing exactly as you expect it to and that variables are being modified
as you want. If while monitoring script activity you see something happen that
you do not expect, you can halt application execution, knowing exactly where
the problem lies.

As your application executes in single stepping mode, you can also keep an eye on
variable values, ensuring that they are being properly set and modified as you
expect them to. You can also switch between sprites and observe other scripts,
which will also be executing in single stepping mode.

Hint

Although single stepping is a very helpful debugging tool, it lacks many of the features that are
usually included in debugging tools provided by most modern programming languages. For
example, it lacks the ability to set breakpoints, which pause execution when certain code
statements are reached, giving programmers the ability to access an application’s status before
allowing the application to continue its execution. Still, single stepping serves its purpose well,
and when combined with the debugging techniques covered in this chapter, it should be more
than sufficient to help you track and fix any application bug.

Watch Out when Removing Sounds and Sprites

Unlike many programming languages, Scratch is extremely forgiving when it
comes to what in many programming languages would be considered a major
error. For example, let’s say you created a script that played an audio file named

287

288

Chapter 15 = Finding and Fixing Program Errors

meow, as demonstrated below, and you later decided to remove the audio file from
your application but forgot to remove the sound block in the script. It would
certainly be logical to expect that when you ran your application, an error would
occur. But this will not be the case.

Rather than preventing application execution and highlighting the error, Scratch
overlooks the problem and runs your application anyway. When it comes time to
play the missing audio file, scratch just ignores the problem. This behavior can be
a double-edged sword, because on the one hand your application still runs.
However, unless you carefully test the execution of your application after
deleting the sound file, you may not discover the error, and the overall quality of
your application will suffer.

Scratch is just as forgiving when it comes to the management of sprite costumes.
Suppose, for example, that you added a costume named batl-a to a sprite and
then used the following script to switch its costume:

iy

switch to costume batl-a |

If sometime down the road you decided to modify your application by removing
the costume from the sprite, Scratch would not flag the oversight as an error and
would instead allow your application to run, ignoring the costume switch error
when it came across it. Again, this type of behavior is a double-edged sword and
can only be overcome by careful modification and retesting of your Scratch
applications any time you decide to change or remove a sound, costume, or
background.

Getting Help

The development of good debugging skills is an absolute requirement for any
serious programmer. However, no matter how good you may be at debugging,
there are going to be times when you may need additional help in finding the
answer to a particular problem or challenge. Fortunately, there are a number of
resources that you can turn to for assistance, both within Scratch and online, as
discussed in the following sections.

Getting Help

Referring to Scratch’s Online Help

One source of help that you can turn to with the click of a button is the Scratch
Help web page, which you can access by clicking on the Want Help? button
located at the top of the Scratch IDE. When clicked, Scratch opens your default
browser and loads the web page shown in Figure 15.4.

On this web page you will find links to a number of helpful resources, including
links that let you open Scratch’s Getting Started and Reference Guide PDF
manuals as well as its support page. The support page contains additional links to
online videos, Scratch Cards, and other information. Also available on the web
page is a link labeled Help Screens, which when clicked displays a listing of help
screens, as shown in Figure 15.5, each of which is designed to teach you how to
work with an individual Scratch code block.

The help screens are organized by category. Using links provides at the top of the
web page, you can jump to specific categories of help screens.

Getting Help for Individual Code Blocks

An even faster way of accessing Scratch help screens is to view them one at a
time on an as-needed basis without having to go through the Internet to view

T Seratch Help - Windaws Intemet

, B B CProgeem Rl SortcbiHeiphenindies bl =|4r | X | Goog a2
==
| S el fr B - b Glens @ B0
| QRATHHE
‘Want Help with Scratch?
Getting Started Help Screens Referance Guide
s fr
& wtap by stap guide o getting Find out how 15 uae wach Black Crean

Figure 15.4
Online help is just a single click away.

289

290 Chapter 15 = Finding and Fixing Program Errors

L)
L w| oy | x| Geogie B
R T — | G B i) O ook = @ D
7 m
ScRATH
HELP SCREENS

MOTION | LOOKS | SOUND | BEN | CONTROL | SENSING | NUMBERS | YARIANLES
MOTION

e epe EVE 10 SLeps

teps mowe 10 steps in the opposite dimction

Figure 15.5
Using the Help Screen links, you can quickly view help information for all of Scratch’s code blocks.

the x position of the shadow
is set to the x position of the ball

use this block to access various properties of other
sprites and use them in the current Sprite’s scripts.

Figure 15.6
An example of a typical help screen.

them. To view the help screen for an individual code block, right-click on the
code block and then click on the help option that appears in the resulting
popup menu. For example, Figure 15.6 shows the help screen for one of the
sensing blocks.

Getting Help

In this particular example, the help screen demonstrates the code block’s usage
and provides an example that further demonstrates the effect of using the code
block. In addition, more information is provided at the bottom of the help screen
that shows all of the code block’s available options.

Getting Help from Other Scratch Programmers

In addition to the documentation made available to you through Scratch’s help
screens, the Scratch website also sponsors a collection of forums that bring
together Scratch programmers from around the world. These forums facilitate
the free exchange of ideas and provide you with the opportunity to seek out help
and advice from fellow Scratch programmers. As shown in Figure 15.7, you can
access these forums by going to http://scratch.mit.edu/forums.

Tip

If all else fails and you simply cannot find an answer to a particular problem, you can try sending
an email to the Scratch developers by going to http://scratch.mit.edu/contact/us and filling in the
email form that is provided. When doing so, provide as much information as possible about your
problem and the steps that you have taken in trying to fix it.

8 5w Forumms - Windoms Intermet Explorer =& T

[« [R e —" w43 | x | Goopie P -

|) Sceech Fonama S o= g [Page =) Took = e &0

r_!ﬂ-p_ -.'_F'T".rq".'_T home projects galleries wupport forumm sbout my stuff

Welcome, TheCaptain | Logout @

imaging » program » share

Scratch Forums

W Show and 1ol
Toll saryone sbout your projects and gallevies
W
frogu

Figure 15.7
The forums are organized into a number of high-level categories, including a forum dedicated to

discussing troubleshooting.

291

http://scratch.mit.edu/forums
http://scratch.mit.edu/contact/us

292

Chapter 15 = Finding and Fixing Program Errors

R LV —— =[BT
G+ | i ma esutonmasestonm shpiaes w3 x || Geogie P~

R L — S s B - oo Page= 3 ook = @ &0

ORAT T
Weicome, TheCaptain | Logout ﬁ

imagine + program + share.

Scratch Forums

Pagess 12124 s » Trondbeshessting Pt e Besrie

Figure 15.8
Scratch forums provide the ability to interact with and learn from other Scratch programmers.

By posting your questions to the appropriate forum, you can tap into the
expertise and experience of other Scratch programmers. Often, you can find an
answer to your problem without having to post a question at all. Answers can
often be found in threads already posted by other Scratch programmers.
Figure 15.8 shows an example of types of discussions you will find when you
visit the Scratch website’s forums.

Summary

This chapter taught you about the different types of errors to which Scratch
applications are susceptible and examined a number of different ways in which
pesky application bugs can be tracked down and eliminated. This included
learning how to run your application in stepping mode so that you can monitor
the execution of the logical flow within your application while also keeping a
watchful eye on variable values. You also learned how to access help from dif-
ferent sources, including the forums sponsored on the Scratch website, where
you can receive help from Scratch programmers around the world.

PART IV

APPENDICES

This page intentionally left blank

APPENDIX A §

WHAT’S oON THE COMPANION
CcD?

As you continue to learn more about Scratch and improve your programming
skills, it helps to have access to a good collection of source code that you can
reference. This book has provided you with numerous sample Scratch applica-
tion projects. By studying these projects, you can learn a lot about how to
program. You can also use this book to find working examples of how to perform
different types of tasks and use them as the basis for creating new Scratch
application projects. This will not only save you time, but it will also keep you
from having to re-invent the wheel and let you keep your focus on tackling new
programming challenges.

If you have been faithfully re-creating all of the Scratch application projects
presented in this book, then you already have access to such a collection of
sample projects. However, if you skipped around a bit, then you may have missed
a few sample projects. You will be happy to know that all of the sample Scratch
projects covered in this book are available at your fingertips on this book’s
companion CD.

Scratch Project Source Code

You will find copies of the source file for all of the Scratch projects developed in
this book on the companion CD. You will also find copies of any custom graphics
and audio files required to build projects. Table A.1 provides a complete list of
each of the Scratch project source code files that you will find on the CD.

295

296 Appendix A

= What's on the Companion CD?

Table A.1 Scratch Projects Available on the Companion CD

Chapter File Name
Chapter 1 Hello World.sh
Chapter 4 My. Wiggly's Dance.sb
Chapter 5 Fish Tank.sb

Chapter 6 Family Scrapbook.sb
Chapter 7 Basketball Quiz.sb
Chapter 8 NumberGuess.sh
Chapter 9 Ball Chase.sh

Chapter 10 Crazy Eight Ball.sb
Chapter 11 Family Picture Movie.sb
Chapter 12 Doodle.sb

You will also find each of these projects published on the Scratch website at
http://scratch.mit.edu/ in the Scratch Programming for Teens gallery.

Note

In addition to all of the sample applications listed in Table A.1, you will also find a bonus
application named Scratch Pong on the book’s CD-ROM. You will not find this application on the

Scratch Programming for Teens gallery at the Scratch website.

Scratch Installation Files for Microsoft Windows
and Mac OS X

In addition to all of this book’s sample projects, you will also find the installation
files needed to install Scratch version 1.2.1 on either Microsoft Windows or Mac

OS X on the book’s companion CD-ROM.

http://scratch.mit.edu/

APPENDIX B §

WHAT NEXT?

Learning how to become a good programmer takes time and effort. It means
putting in the hours necessary to learn the fundamental techniques involved in
developing computer application projects. Scratch provides an excellent plat-
form for getting started. It provides a friendly and fun environment in which to
learn. A good understanding of Scratch programming will prepare you to make
the jump to other programming languages like Visual Basic, AppleScript, C++,
and so on.

Learning Scratch requires commitment. By making your way through to the end
of this book, you have demonstrated this commitment. Although this book has
certainly taught you a lot about Scratch and programming in general, there is still
much more to be learned.

To become a world-class programmer, you need to continue your programming
education. You need to continue to experiment and learn as much as you can
about Scratch. Do not think of this book as the end of your Scratch programming
education. Instead, think of it as the beginning. Over the coming weeks and
months, you should continue developing new Scratch projects. You should also
keep an eye on the different forums hosted on the Scratch website to learn from
the experiences of others. Better yet, consider becoming an active member of the
Scratch community.

297

298

Appendix B = What Next?

To help you further your understanding of Scratch and to become a better
programmer, this appendix provides a list of websites and supplemental reading
materials that you can turn to as you continue to develop and hone your pro-
gramming skills.

Locating Scratch Resources Online

As you would expect, there is an awful lot of helpful information on the Internet
about Scratch. By frequenting the websites discussed in the sections that follow,
you can keep abreast of the latest happenings in the Scratch community while
also keeping your Scratch programming knowledge and skills up to date.

The Scratch Website

The most informative and helpful Scratch website is the Scratch site developed
and maintained by MIT located at http://scratch.mit.edu, as shown in Figure B.1.

This site is packed with helpful information, including documentation, video
tutorials, and forums where you can go to interact with and learn from other
Scratch programmers from around the world. Best of all, this site provides
instant access to tons of Scratch projects, all of which you can download,
experiment with, and learn from.

|+ @ B re——p—— w1 ¥ {30 Vhout Search e
TS p— TTr——— o
8 @l

N)
2 e oot 1

Login cr Signup for an &

fmaging « program « thare R Bl

animation. art

Figure B.1
The official home page of the Scratch programming language.

http://scratch.mit.edu

Locating Scratch Resources Online

Figure B.2
Scratch is developed by the Lifelong Kindergarten Group at MIT.

The Lifelong Kindergarten Website

Another website that is certainly worth visiting is the Lifelong Kindergarten MIT
Media Lab site located at http://llk.media.mit.edu/, as shown in Figure B.2.

This site includes information about Scratch, including links to various papers
about Scratch.

The Wikipedia Scratch Page

Another excellent source of Scratch information is the Wikipedia Scratch page
located at http://en.wikipedia.org/wiki/Scratch_%28programming_language%29,
as shown in Figure B.3.

Here you can find information on Scratch, its origins and creator, as well as its
development environment and website. In addition, you will also find plenty of
links to papers about Scratch.

The Programming Page at the Thornburg Center Website

If your operating system of choice is Linux, you will be pleased to know that an
official Linux version of Scratch is in the works. In the meantime, if you cannot
wait, you can download a free user implementation of Scratch at http://
tcpdpodcast.org/scratch.html, as shown in Figure B.4.

299

http://llk.media.mit.edu/
http://en.wikipedia.org/wiki/Scratch_%28programming_language%29
http://tcpdpodcast.org/scratch.html
http://tcpdpodcast.org/scratch.html

300 Appendix B = What Next?

| erem [| [ettt ou |[v |
Scratch (programming language)

| From Wiksed, Be Ere encroeeeda

Scratch
maagason 21ive a3 2 Maching nguage g AT 1 .I' r
Man Fage | web ste. "B O 5 » g
Corcerey 4 Propies Sf13nps3g SCIE 300 UGE b~
Fustured czntint 5 Source code
e etz & Oudee veesions
Pandmasce || [7semensnees
imramon Bhotes
AbootWikipess || |WEswmalinky
Comemunty portal
s L]
= Parsdgm cemctonented
(2 m—hm Scrach i an eterpreted dyramic vissal programiming language based on and eacatona
: y i Appesredim 2007
wan PPOgrams are runveng. & s the goal of teachng programensng Concapts to
|| endsren gaman, wheos, B mume B en be Sdsiganipy: - Michal Rasatck:
e 3 ¥ andafe | Developert M Rasrece, Jor
(o] [(S9] || schou setmgs aoumd the word ke
oo Scratch's scratching, Fusk, vt
= Whst ik Rare || ot e i and 23 mplerertaton. The smalanty 15 motcsl Eastmond, Tammy
* Rsiated changes “scrmiching’ i the ekry reusabiity of pieces’ in Scratch o the inteeactve SHem, Amon Mir,
o Upisagtie hpects, graghecs, and sounds can be easidy imported to 3 new program and Jay Shver andBnan
= Apmeti e comtaned i raw ways That way. begnners can get queck resuts and be Sheman
. w'“"'., mataated lo bry htfur. Latestreloase 12U Decembnr 2007 |
= e Tus page Tha wabsde for scratch shows rapd growth of the Scrstch communty, fom. Typmg discpane Smamic |
tanozaces Sl to Fotemy 2008, e BRSSO prople e, 50N Arrain =
Sncienrihs Sl IR
Figure B.3

The Scratch page located at www.wikipedia.org.

Pragmatic Visionaries

Figure B.4
Downloading a free copy of Scratch for Linux.

You will find all of the instructions you need to download and install Scratch on
Linux at this site. Although it does not support Scratch’s Presentation mode, this
Scratch implementation provides most of the programming features currently
available in the Windows and Mac OS X versions of Scratch.

www.wikipedia.org

Recommended Reading

@ T e

|+ | B —— = 4| % | vahoot 5 A~

G| 8 scmch Rasousces | Mome 5w D m i Page e) Teok = B

QR AT~
resgurces Home Sprites Sounds Tutorials About Scratch

Scratch Resources Home

Spotlights Newest
s L2)
s e _aeee | o= et
iy ey Cat I Cat things
e Lye] et S

)
b
\f |8
K (5
N
v

Figure B.5
You can download free sprite and sound files from the Scratch Resources website.

The Scratch Resources Website

Another useful website dedicated to Scratch is the Scratch Resources website
located at http://resources.scratchr.org/pages/, as shown in Figure B.5.

This sites provides free access to a growing collection of sprite and sound files,
which you are invited to download for free, provided you reference the Scratch
Resources website in your Scratch project’s credits. In addition to sprite and
sound files, you will also find video tutorials designed to help you learn more
about programming with Scratch.

Recommended Reading

In addition to the websites previously discussed, you can learn a lot about Scratch
by reviewing documentation available on the web. This documentation is
available electronically. A brief description of some particularly useful docu-
ments, including their locations, is listed here.

m Getting Started with Scratch. This 14-page PDF file provides a step-by-step
guide to Scratch, demonstrating its basic operation and many of its cap-
abilities. This document can be downloaded from the Support page at the
Scratch website (http://scratch.wik.is/Support).

301

http://resources.scratchr.org/pages/
http://scratch.wik.is/Support

302

Appendix B = What Next?

m Scratch Reference Guide. This 17-page PDF file provides detailed

information about the Scratch graphical interface, its Paint Editor
program, and a detailed overview of each of the Scratch blocks. This
document can be downloaded from the Support page at the Scratch
website (http://scratch.wik.is/Support).

Getting Started with Scratch Boards. This nine-page PDF file provides an
overview of Scratch Boards and detailed explanations of how to work
with its many different features. It also provides troubleshooting advice.
This document can be downloaded from the Scratch Board page

at the Scratch website (http://scratch.wik.is/Support/Scratch_Board).

An Introduction to Scratch. This online book is available as a Wikibook
through www.wikipedia.org. At the time of writing, the Wikibook was
still a work in progress. However, it was already well underway and
contained a growing collection of programming information about
Scratch. This document can be read online at Wikibooks by visiting
http://en.wikibooks.org/wiki/Scratch/Lessons.

www.wikipedia.org
http://en.wikibooks.org/wiki/Scratch/Lessons
http://scratch.wik.is/Support/Scratch_Board
http://scratch.wik.is/Support

GLOSSARY -

Actor. A term used to refer to sprites and the role they play as they interact with
one another on the stage.

Animated GIF. A graphic is made up of two or more frames, each of which is
displayed as an automated sequence when the GIF file is displayed.

Boolean. A term used to represent data that has either of two values, true or false.

Brightness. The application or restriction of the intensity of light in a graphic
image.

Broadcast Message. An electronic message sent between sprites as a means of
coordinating application activity.

Code Block. A graphical command used in the creation of a script.

Collision. An event that occurs whenever two sprites come into contact with
one another on the stage.

Compression. The process of reducing the size of sound and graphics files in
order to reduce the overall size of Scratch applications.

Conditional Logic. The process of executing sets of code blocks based on
whether or not a tested condition proves true.

Costumes. Images that are used to represent a sprite on the stage.

303

304

Glossary

Data. A piece of information collected, stored, modified, and processed during
application execution.

Debugger. A program or utility that can be used to execute an application
within a special environment that allows programmers to slow and monitor
the execution of an application’s script as it runs.

Decimal. A floating point or real number.
Endless Loop. A loop that does not have a means for terminating its execution.

Event Handling. The process of initiating script execution based on the
occurrence of predefined events, such as a mouse click, the pressing of a
keyboard key, or the clicking of a sprite.

Fisheye. A graphic effect that can be applied to a sprite or background in order
to magnify a portion of its image.

Ghost. A graphic effect that fades the appearance of a costume or background,
making it look transparent.

Global Variable. A variable that can be modified by any script in an application.

Gradient. A color created by blending together the foreground and background
colors.

Hat Block. A code block that creates event-driven scripts.

IDE (Integrated Development Environment). A graphical application devel-
opment environment designed to facilitate program development.

Integer. An absolute or whole number that does not have a decimal point.

Java. A popular web-based programming language that is a prerequisite for
executing a Scratch application on the Scratch website.

Local Variable. A variable that can be modified only by scripts belonging to the
sprite in which the variable is defined.

Logical Error. An error created by a mistake made by the programmer when
developing the logic implemented by a script.

Looks Blocks. Code blocks that affect sprite and background appearance and
display text.

Loop. A collection of one or more code blocks that are repeatedly executed.
Monitor. A small block that displays the value currently assigned to the code block.

Mosaic. A special graphic effect that creates an image made up of repeated
instances of a sprite or background.

Glossary

Motion Blocks. Code blocks that control sprite placement, direction, rotation,
and movement.

MP3. An audio file that utilizes advanced compression technology while
retaining high audio quality.

Nest. The process of embedding one set of code blocks within another set of
code blocks.

Numbers Blocks. Code blocks that perform mathematical operations, logical
comparisons, rounding, and other arithmetic operations.

Order of Precedence. The set of rules that is followed when evaluating a numeric
expression.

Paint Editor. A Scratch program that supports the creation of graphics files to
be used as the basis for creating and modifying sprites and backgrounds.

Pen. A virtualized drawing tool that can be used to draw on the stage.

Pen Blocks. Code blocks that can be used to draw using different colors and
pen sizes.

Pixelate. A special graphic effect that displays a sprite or background at a lower
resolution than the resolution at which it was created.

Project. A collection of sprites, scripts, backgrounds, and sounds that is used as
the basis for creating Scratch applications.

Real Number. A number that includes a decimal number.

Reporter Block. A code block that has either rounded or angled sides and is
specifically designed as a mechanism for providing input for other code
blocks to process.

Rotation Center. The point on a sprite that remains in position when a sprite is
rotated.

Run-time Error. An application error that occurs when an application attempts
to perform an illegal action.

Scope. A term that refers to the area within an application where a variable’s
value can be accessed and modified.

Scratch Board. A special piece of hardware that you can buy from the Scratch
website and attach to your computer in order to collect and process
environmental and user-provided input.

Scratch Cards. PDF files that you can print and use as a quick reference for
performing certain tasks.

305

306

Glossary

Script. A collection of code blocks that outlines the programming logic that
influences the operation of a sprite.

Sensing Blocks. Code blocks that can be used to determine the location of the
mouse-pointer, its distance from other sprites, and whether a sprite is touching
another sprite.

Sound Blocks. Code blocks that control the playback and volume of musical
notes and audio files.

Sprite. A two-dimensional image drawn on a transparent background that can
be moved around the stage. You can change its appearance using different
costumes.

Squeak. A cross-platform programming language used to develop Scratch.

Stack Blocks. Code blocks with a notch at the top or a bump at the bottom that
can be snapped together with other bocks to define a script’s programming
logic.

Stacks. Another term for a script.

Stage. The background area on the Scratch IDE upon which sprites are
displayed during application execution.

String. A set of characters that can be displayed within thought and speech
bubbles.

Tempo. A measurement of the speed, in beats per minute, at which a drum or
note is played.

Troubleshooting. The identification, location, and elimination of program-
ming errors, or bugs, that prevent applications from executing properly.

Variable. A location in memory where an individual piece of data is stored.

Variable Scope. Identifies the location within an application where the variable’s
value can be modified.

Variables Blocks. Code blocks that can be used to store data used by applications
when they execute.

Wave. A file with a .wav extension that supports the storage and playback of
audio files.

Whirl. A special graphic effect that twists and distorts a portion of a costume
or background.

A

About button, 30
abs function, 168

accounts, Scratch registration, 23-24

acos function, 168
actions, initiating, 272
actors. See sprites
addition operations, 159-160
Adobe Photoshop program, 46
Advanced topics forum, 25
advantages of Scratch, 4-5
AIF files, 43
alignment, 41
All About Scratch forum, 25
alligator clips, 268
animated GIF files, 43
animation sequence, 226-227
Animation tags, 255
announcements, 25
applications
distributing, 91-93
executing from CD-ROM, 93
execution, 34
running, 257
on Internet, 251
in presentation mode, 33
troubleshooting, 74
uploading, 254-256
arithmetic operations, 67
Art tags, 255
asin function, 168
Asteroids, 50
atan function, 168
AU files, 43

INDEX

audio files. See sound files
automation, 17-18, 20

backgrounds
adding to stage area, 32
Dance application example, 77-79
Family Picture Movie example, 223-225
Fish Tank application example, 111
Number Guessing Game project
example, 171
copying, 43
deleting, 79
editing, 43
importing, 78
special effects, 202-204
switching, 229
viewing, 43
Ball Chase game example
ball movement control, 191-192
coordinate game play scripts, 192-194
game over messages, 192
new project creation, 189
project preview, 188—189
saving and executing new project, 195
sound files, 191
sprites, adding and removing, 189-190
variables, adding required by application, 191
Basketball Quiz Project example
adding and removing sprites, 150-151
adding variables required by
application, 151-153
automating administration of, 154-157
new project creation, 150

307

Index

Basketball Quiz Project example (continued)

project preview, 148—150

saving and executing new

application, 157

scripts, adding to button sprites, 153—154
blocks. See also code blocks

categories, 60

color-coded, 60

control, 65, 177-178

hat, 57

help files, 70, 289-291

if...else, 122

looks, 62-63

monitors, 59

motion, 61-62, 98

moving, 54
numbers, 67
pen, 64

point in direction, 102
reporter, 57-58
sensing, 65-67, 120-121, 123, 270
sound, 63-64
stack, 55-57
variables, 67-69
Boolean data, 140
boolean logic, 74
broadcast messages, 174, 183
bubble captions, 16
button controls (Paint Editor), 49-50
buttons
About, 30
Choose New Sprite from File, 36
Compress Images, 31
Compress Sounds, 30-31
Control, 17
Copy, 43
Delete, 35, 38, 4344
Duplicate, 35, 38
Edit, 43
Export, 40
Export this sprite, 35
Extras, 30
Get Surprise Sprite, 37
green flag, 34
Grow Sprite, 38
Help Screens, 31
Import, 30, 42, 78
Language, 30
Looks, 16
Motion, 38

Move, 37

New, 15, 29, 77

New Sprites, 35-36
Open, 29

Paint, 42

Paint Editor, 48-50
Paint New Sprite, 35
Play, 44

Presentation Mode, 33
Record, 44

red stop, 34

Reference Guide, 31
Save, 18, 29, 90

Save As, 29

Scratch toolbar, 37-38
Share!, 29

Show, 35

Shrink Sprite, 38
Sound, 16

sprite rotational, 41
Start Single Stepping, 30
Stop, 44

tooltips, 30

Undo, 30

Visit the Scratch support page button, 31
Want Help?, 30-31
Zoom (Paint Editor program), 47

C

case-sensitivity, variable names, 143
cat image icon representation, 12
CD-ROM, executing applications from, 93
CD-ROM (Scratch Programming for Teens)
free trial version, 6
Scratch installation files, 8
centering sprites, 35
Choose New Sprite from File button, 36
Clear canvas button (Paint Editor), 50
code blocks. See also blocks
adding, new project creation, 16-18
configurable, 7
dragging from blocks palette to
scripts area, 41
overview, 7
switching between, 38
collision detection, 124-127
color settings
Paint Editor program, 50
pen, 234-236

color special effects, 202
comments, 257, 259
comparison operations, 162—-165
Compress Images button, 31
Compress Sounds button, 30-31
conditional logic, 65, 68, 74, 184-185
control blocks, 65, 177-178
Control button, 17
coordinate system, stage, 31
coordinates, sprite, 105
Copy button, 43
copying
backgrounds, 43
costumes, 43
sprites, 35, 38
stage area portions, 33
Corel Paint Shop Pro project, 46
cos function, 168
costumes
adding, 4243, 198
changing, 199
copying, 43
defined, 12
deleting, 43
editing, 43
numbering, 199
order of, 198
special effects, 202-204
switching, 228
viewing, 16
countdown, 227-228
Crazy Eight Ball Game example
eight ball display, 210-211
new project creation, 209
programming logic, 211-212
project preview, 207-208
saving and executing new project, 212
sound files, 210
sprites, adding and removing, 209-210
variables, adding required by application, 210
cross-hairs, 50-51

D

Dance application example
backgrounds, adding to stage area, 77-79
dance music, playing, 85-87
new sprite creation, 77
project preview, 75-77
saving and executing new Scratch
application, 90

Index

sound files, importing, 82-84
sprites, adding and removing, 80-82
data
Boolean, 140
data types, 140-141
how data is collected, 139-140
integers, 140
real numbers, 141
storing in variables, 141
string, 140
debugging. See also errors
basic techniques, 281-284
informative messages, 282
monitors, liberal use of, 284
single stepping, 284-287
testing individual scripts, 283
updates, tracking, 281
Delete button, 35, 38, 43-44
deleting
backgrounds, 79
costumes, 43
sprites, 35, 38
variables, 145
development, Scratch, 3
direction, sprite, 101-103
disappearing/reappearing
sprites, 205
distance, determining, 127-128
distribution, applications, 91-93
division operations, 159—160
Doodle Drawing project example
clearing the stage area, 246-247
new project creation, 241
programming logic, 244-246
project preview, 240-241
saving and executing new project, 247
sprites, adding and removing, 242-243
downloading
projects, 265
Scratch, 8
drawing canvas (Paint Editor
program), 47
drawing lines and shapes. See pen
drum sounds, 216-217
Duplicate button, 35, 38

E

Edit button, 43

editing
backgrounds, 43

309

310

Index

editing (continued)
costumes, 43
scripts, 41
Educators forum, 25
electrical resistance, 274-275
Ellipse toolbar button (Paint Editor), 48
endless loops, 186187
equal to comparison operator, 165
equal to operator, 165
Eraser toolbar button (Paint Editor), 48
errors. See also debugging
logical, 279-280
programming practices, 277-278
run-time, 280-281
syntax, 279
event handling, 74
event programming, 65, 178-179
execution
loop, 180-182
pausing, 178-179
Export button, 40
Export this sprite button, 35
exporting sprites, 35
Extras button, 30
Eyedropper toolbar button (Paint Editor), 48

F

Family Picture Movie example
new project creation, 222
programming logic, 226-229
project preview, 221-222
saving and executing new project, 230
sound files, 226-228
sprites and backgrounds, adding and
removing, 223-225
variables, adding required by application, 225
FAQ forum, 25
Fill toolbar button (Paint Editor), 48
Fish Tank application example
animating and swimming of fish, 113-117
backgrounds, adding to stage area, 111
new project creation, 111
project preview, 110
saving and executing new project, 116-117
sound files, adding, 112
sound files, playing, 113
sprites, adding and removing, 111-112
fisheye special effects, 202203
Flip horizontally button (Paint Editor), 50
Flip vertically button (Paint Editor), 50

Follow the Mouse Scratch card, 110
forums
help files, 291-292
list of, 25-26
free trial copy, 6
full-screen mode, 33

G

galleries, 22-23, 260-263

Game tags, 255

Get Surprise Sprite button, 37
Getting Start button, 31

ghost effects, 203

GIF files, 43

Glide Scratch card, 110

global community of Scratch, 19, 21
global variables, 143-144

greater than comparison operator, 165
green flag button, 34

Grow button (Paint Editor), 49
Grow Sprite button, 38

H

hat blocks, 57
Hello World! application, 15
help files. See also resources
blocks, 70
forums, 291-292
Getting Started button, 31
Help Screens button, 31
for individual code blocks, 289-291
Reference Guide button, 31
Scratch Help web page, 289
Visit the Scratch support page button, 31
Want Help? button, 30-31
Help Screens button, 31

icons, cat image representation, 12
IDE (integrated development
environment), 28-29
if...else block, 122
images. See costumes
Imagine-Program-Share! slogan, 5
Import button, 42, 49, 78
Import Project button, 30
importing
backgrounds, 78
sound files, 44, 8284
informative messages, 282

installing
Java, 9-10
Scratch
on Mac OS X, 12-13
on Windows, 10-11
Scratch Boards, 269-270
integers, 140
interface design, 74
Internet, running applications on, 251
iterative processing, 74

J

Java, installing on Windows, 9-10

K

key, determining when pressed, 123
Key Moves Scratch card, 110

L

Language button, 30
language support, 19
laptops, One Laptop Per Child project, 4
less than operator, 165
levels, overlapping sprites, 206
licensing agreements, Java installation on
Windows, 10
light, reacting to, 272-273
light sensors, 268
Line toolbar button (Paint Editor), 48
lines and shapes, drawing. See pens
In function, 168
local variables, 143-144
locking/unlocking sprites, 41
log function, 168
logic, Scratch application project example, 7
logical comparisons, 166—-167
logical errors, 279-280
looks blocks, 62-63
Looks button, 16
looping, 65
endless loops, 186-187
execution, 180-182
variables blocks and, 69

M

Mac OS X
distributing Scratch applications to, 93
scratch installation, 12—13
mathematical calculations

Index

abs function, 168
acos function, 168
addition operations, 159-160
asin function, 168
atan function, 168
built-in, 168-169
comparison operations, 162—165
cos function, 168
division operations, 159-160
In function, 168
log function, 168
logical comparisons, 166—167
multiplication operations, 159-160
order of precedence, 160-161
random number generation, 161-162
rounded numbers, 167—-168
sin function, 168
sqrt function, 168
subtraction operations, 159-160
tan function, 168
member galleries, 22-23
menu bar buttons, 29-31
MIT Media Lab, 6
monitors
appearance of, changing, 59
defined, 59
displaying, 59
liberal use of, 284
toggling between, 59
variable-based, 59, 147
mosaic effects, 203
motion blocks, 61-62, 98
Motion button, 38
mouse pointer location
retrieving mouse button and coordinate
status, 121-122
tracking, 37
Move button, 37
Move to a Beat Scratch card, 110
moving
blocks, 54
sprites, 37, 98-101
Moving Animation Scratch card, 110
MP3 files, 43
Mr. Wiggly’s Dance application example.
See Dance application example
multiplication operations, 159-160
music. See sound files
Music tags, 255
musical notes, 217-218

311

312

Index

N
naming
projects, 18
sprites, 16, 39
variables, 143
nesting conditional control blocks, 186
New button, 15, 29, 77
new project creation
Ball Chase game example, 189
Basketball Quiz Project example, 150
Crazy Eight Ball Game example, 209
Dance application example, 77
Doodle Drawing project example, 241
Family Picture Movie example, 222
Fish Tank application example, 111
Number Guessing Game project example, 171
saving and executing
Ball Chase game example, 195
Basketball Quiz Project example, 157
Crazy Eight Ball Game example, 212
Doodle Drawing project example, 247
Family Picture Movie example, 230
Fish Tank application example, 116-117
Number Guessing Game project example, 176
Scrapbook application example, 136-137
New Sprites button, 35-36
not equal to operator, 165
notes
adding and updating, 45
text saved as, 46
Number Guessing Game project example
backgrounds, adding, 171
new project creation, 171
player guesses, processing, 174-176
project preview, 169-171
saving and executing new project creation, 176
scripts, adding, 173-174
sound files, 173
sprites, adding and removing, 171-172
variables, adding required by
application, 172-173
numbers blocks, 67
numeric countdown, 227-228

(o)

One Laptop Per Child project, 4
Open button (menu bar), 29
order of precedence, 160-161
order of sprites, 34

overlapping sprites, 206—-207

P

Paint button, 42
Paint Editor program
button controls, 4950
color settings, 50
drawing canvas, 47
overview, 46
Set Rotation Center button, 50
starting, 35, 42
toolbar buttons, 48
Zoom buttons, 47
Paint New Sprite button, 35
Paintbrush toolbar button
(Paint Editor), 48
pen blocks, 64
pixelate effects, 203
Play button, 44
playback, sounds, 16
point in direction block, 102
Presentation Mode button, 33
presentation mode, running applications in, 33
program synchronization, 74
programming logic
Crazy Eight Ball Game example, 211-212
Doodle Drawing project example, 244-246
Family Picture Movie example, 226-229
project notes
adding and updating, 45
text saved as, 46
projects
creating new, 15-16
downloading, 265
naming, 18
removing, 264
updating, 264

R

random number generation, 67-68, 161-162
real numbers, 141
Record button, 44
recording sound files, 44
Rectangle toolbar button (Paint Editor), 48
red stop button, 34
Redo button (Paint Editor), 50
Reference Guide button, 31
registering
Scratch, 23-24
websites, 252—254
removing projects, 264
reporter blocks, 57-58

repositioning sprites, 103-104
resources. See also help files
forums, 24-26
global community of Scratch, 19, 21
Want Help? button, 30-31
Rotate clockwise button (Paint Editor), 50
Rotate counterclockwise button
(Paint Editor), 50
rotation
clockwise, 99
sprite, 98—101
sprite rotational buttons, 41
rounding numbers, 167-168
Ruby programming language, 6
running applications, 257
run-time errors, 280-281

S

Save As button, 29
Save button, 18, 29, 90
Save Project window, 18
saving
how to save projects, 18-19
stage area copies, 33
Scrapbook application example
adding and removing sprites and
costumes, 133—-134
adding sound files to stage, 134
new project creation, 132
saving and executing new project
application, 136-137
Scratch
advantages of, 4-5
building block approach to
programming, 6—7
development, 3
downloading, 8
free trial copy of, 6
installing
on Mac OS X, 12-13
on Windows, 10-11
user-adapted version, 8
website, 6, 8, 23-24
Scratch Boards, 131
controls and sensors, 268
installing, 269-270
purchasing, 269
Scratch Board Watcher, 275-276
Scratch cards, 107-110
scripts

Index

alignment, 41
defined, 12
editing, 41
execution
pausing, 178-179
terminating, 187
running, 14, 17
spacing evenly, 41
Selection toolbar button (Paint Editor), 48
sensing blocks, 65-67, 120-121, 123, 270
sequential processing, 74
Set Rotation Center button (Paint Editor), 50
Setup Wizard (Scratch), 10-11
shading levels, 236-237
shapes and lines, drawing. See pens
Share! button, 29
shared projects, 251
Scratch slogan, 5
sharing your application projects, 21-23
show and tell topic forum, 25
Show button, 35
Shrink button (Paint Editor), 50
Shrink Sprite button, 38
Simulation tags, 255
sin function, 168
single stepping, 284287
sites. See websites
size
pen, 238-239
sprite, 38, 204-205
sliders, 147, 268, 270-271
slogan, 5
sound blocks, 63—64
Sound button, 16
sound files
adding, 43-44
Fish Tank application example, 112
Scrapbook application example, 134
AIF files, 43
AU file, 43
Ball Chase game example, 191
cautious removal, 287-288
Crazy Eight Ball Game example, 210
Family Picture Movie example, 226-228
importing, 44, 82-84
importing and assigning to sprites, 42
MP3 files, 43
musical notes, 217-218
Number Guessing Game project example, 173
playback, 214-215

313

Index

sound files (continued)
playing, 44
Fish Tank application example, 113
Scrapbook application example, 135
recording, 44
removing from application, 44
responding to, 273-274
retrieving audio data, 130-131
stopping playback, 44
tempo, 220-221
viewing list of, 43—44
volume configuration, 219-220
WAV file, 43
Sound Recorder window, 44—45
sound sensors, 268
sounds
Compress Sounds button, 30-31
playback control, 16
as sprite components, 12
Space Invaders, 272
special effects
adding to costumes and backgrounds,
202-204
brightness, 203
color, 202
fisheye, 202
ghost, 203
mosaic, 203
pixelate, 203
whirl, 202
sprites
adding and removing
Ball Chase game example, 189-190
Basketball Quiz Project
example, 150-151

Crazy Eight Ball Game example, 209-210

Dance application example, 80-82
Doodle Drawing project
example, 242-243
Family Picture Movie example, 223-225
Fish Tank application example, 111-112
Number Guessing Game project
example, 171-172
appearance of, changing, 16
attributes of, changing, 16
automating, 17-18, 20
blue line indicator, 40
bouncing around stage, 105-106
centering, 35
changing size of, 38

collision detection, 124-127
components of, 12
coordinate and direction display, 39-40
coordinates and direction, keeping track of,
106-107
coordinates, changing, 105
copying, 35, 38
costumes, viewing, 16
defined, 12
deleting, 35, 38
direction, 101-103
disappearing/reappearing, 205
distance, determining, 127-128
exporting, 35
generating new, 35-37
locking/unlocking, 41
moving, 37
moving and rotating, 98-101
naming, 16, 39
New Sprites button, 35
order of, reorganizing, 34
overlapping, 206-207
repositioning, 103—104
retrieving stage and sprite data, 129-130
rotation center configuration, 50-51
rotational buttons, 41
selecting, 36, 81
size, 204-205
sprite list, 34-35
uses for, 14
sqrt function, 168
Squeak programming language, 6
stack blocks, 55-57
stacks, 53-54
stage area
appearance of, changing, 31-32
backgrounds, adding new, 32
Dance application example, 77-79
Fish Tank application example, 111
clearing, 231-232, 246-247
coordinate systems, 31
copying selected portion of, 33
defined, 12
full-screen mode, 33
mouse pointer location, tracking, 37
retrieving stage and sprite data, 129-130
running applications on, 31-33
saving copies of, 33
thumbnails, 32
Stamp toolbar button (Paint Editor), 48

stamps, 239

Start Single Stepping button, 30
Stop button, 44

Story tags, 255

string data, 140

subtraction operations, 159-160
suggestions forum, 26

syntax errors, 279

T
tags
adding, 259
list of, 255
tan function, 168
tempo, 220-221
terminating script execution, 187
testing, 283
text controls, 201-202
Text toolbar button (Paint Editor), 48
thumbnails, stage area, 32
timer controls, 128-129
toggling, between monitors, 59
toolbars
Paint Editor program, 48
Scratch, 37-38
tooltips, 30
trial copy, 6
troubleshooting
applications, 74
forums for, 26

U

Undo button, 30, 50

updates, tracking, 281

uploading applications, 254-256
user input collection, 153-154
user-adapted version of Scratch, 8

Vv

variable-based monitors, 59, 147
variables
accessing variables belonging to other
sprites, 145-146
adding required by application
Ball Chase game example, 191
Crazy Eight Gall Game example, 210

Index

Family Picture Movie example, 225
Number Guessing Game project
example, 172-173
assigning to sprites, 142-143
creating, 141
deleting, 145
examples of, 147-148
global, 143-144
local, 143-144
naming, 143
storing data in, 141
use of, 74
variable scope, 143—144
variables blocks, 67—69
Visit the Scratch support page button, 31
volume, sound files, 219-220

w

Want Help? button, 30-31
WAV files, 43
websites
registering, 252-254
Scratch, 6, 8, 23-24
Squeak, 6
whirl special effects, 202-203
Windows
distributing applications to, 92
Java installation, 9-10
Scratch installation, 10-11

X

X-axis
repositioning sprites, 103
stage coordinates, 31

Y
Y-axis
repositioning sprites, 103
stage coordinates, 31
YouTube website, 5

Z

Zoom buttons (Paint Editor program), 47

315

License Agreement/Notice of Limited Warranty

By opening the sealed disc container in this book, you agree to the following terms and
conditions. If, upon reading the following license agreement and notice of limited warranty,
you cannot agree to the terms and conditions set forth, return the unused book with
unopened disc to the place where you purchased it for a refund.

License

The enclosed software is copyrighted by the copyright holder(s) indicated on the software disc.
You are licensed to copy the software onto a single computer for use by a single user and

to a backup disc. You may not reproduce, make copies, or distribute copies or rent or lease
the software in whole or in part, except with written permission of the copyright holder(s).
You may transfer the enclosed disc only together with this license, and only if you destroy

all other copies of the software and the transferee agrees to the terms of the license. You may
not decompile, reverse assemble, or reverse engineer the software.

Notice of Limited Warranty

The enclosed disc is warranted by Course Technology to be free of physical defects in materials
and workmanship for a period of sixty (60) days from end user’s purchase of the book/disc
combination. During the sixty-day term of the limited warranty, Course Technology will provide
a replacement disc upon the return of a defective disc.

Limited Liability

THE SOLE REMEDY FOR BREACH OF THIS LIMITED WARRANTY SHALL CONSIST
ENTIRELY OF REPLACEMENT OF THE DEFECTIVE DISC. IN NO EVENT SHALL
COURSE TECHNOLOGY OR THE AUTHOR BE LIABLE FOR ANY OTHER DAMAGES,
INCLUDING LOSS OR CORRUPTION OF DATA, CHANGES IN THE FUNCTIONAL
CHARACTERISTICS OF THE HARDWARE OR OPERATING SYSTEM, DELETERIOUS
INTERACTION WITH OTHER SOFTWARE, OR ANY OTHER SPECIAL, INCIDENTAL,

OR CONSEQUENTIAL DAMAGES THAT MAY ARISE, EVEN IF COURSE TECHNOLOGY
AND/OR THE AUTHOR HAS PREVIOUSLY BEEN NOTIFIED THAT THE POSSIBILITY
OF SUCH DAMAGES EXISTS.

Disclaimer of Warranties

COURSE TECHNOLOGY AND THE AUTHOR SPECIFICALLY DISCLAIM ANY AND ALL
OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES

OF MERCHANTABILITY, SUITABILITY TO A PARTICULAR TASK OR PURPOSE, OR
FREEDOM FROM ERRORS. SOME STATES DO NOT ALLOW FOR EXCLUSION OF
IMPLIED WARRANTIES OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL
DAMAGES, SO THESE LIMITATIONS MIGHT NOT APPLY TO YOU.

Other

This Agreement is governed by the laws of the State of Massachusetts without regard to choice
of law principles. The United Convention of Contracts for the International Sale of Goods

is specifically disclaimed. This Agreement constitutes the entire agreement between you and
Course Technology regarding use of the software.

